In June 2023, a Federal Civilian Executive Branch (FCEB) agency identified suspicious activity in their Microsoft 365 (M365) cloud environment. The agency reported the activity to Microsoft and the Cybersecurity and Infrastructure Security Agency (CISA), and Microsoft determined that advanced persistent threat (APT) actors accessed and exfiltrated unclassified Exchange Online Outlook data.
CISA and the Federal Bureau of Investigation (FBI) are releasing this joint Cybersecurity Advisory to provide guidance to critical infrastructure organizations on enhancing monitoring of Microsoft Exchange Online environments. Organizations can enhance their cyber posture and position themselves to detect similar malicious activity by implementing logging recommendations in this advisory. Organizations that identify suspicious, anomalous activity should contact Microsoft for proceeding with mitigation actions due to the cloud-based infrastructure affected, as well as report to CISA and the FBI.
Download the PDF version of this report:
TECHNICAL DETAILS
In Mid-June 2023, an FCEB agency observed MailItemsAccessed events with an unexpected ClientAppID and AppID in M365 Audit Logs. The MailItemsAccessed event is generated when licensed users access items in Exchange Online mailboxes using any connectivity protocol from any client. The FCEB agency deemed this activity suspicious because the observed AppId did not normally access mailbox items in their environment. The agency reported the activity to Microsoft and CISA.
Microsoft determined that APT actors accessed and exfiltrated unclassified Exchange Online Outlook data from a small number of accounts. The APT actors used a Microsoft account (MSA) consumer key to forge tokens to impersonate consumer and enterprise users. Microsoft remediated the issue by first blocking tokens issued with the acquired key and then replacing the key to prevent continued misuse.[1]
The affected FCEB agency identified suspicious activity by leveraging enhanced logging—specifically of MailItemsAccessed events—and an established baseline of normal Outlook activity (e.g., expected AppID). The MailItemsAccessed event enables detection of otherwise difficult to detect adversarial activity.
CISA and FBI are not aware of other audit logs or events that would have detected this activity. Critical infrastructure organizations are strongly urged to implement the logging recommendations in this advisory to enhance their cybersecurity posture and position themselves to detect similar malicious activity.
LOGGING
CISA and the FBI strongly encourage critical infrastructure organizations to ensure audit logging is enabled. Note: Per CISA’s Microsoft Exchange Online Microsoft 365 Minimum Viable Secure Configuration Baselines, FCEB agencies shall enable audit logging. These minimum viable secure configuration baselines are part of CISA’s Secure Cloud Business Applications (SCuBA) Project, which provides guidance for FCEB agencies securing their cloud business application environments and protecting federal information created, accessed, shared, and stored in those environments. Although tailored to FCEB agencies, the project provides security guidance applicable to all organizations with cloud environments. The Office of Management and Budget (OMB) M-21-31 requires Microsoft audit logs be retained for at least twelve months in active storage and an additional eighteen months in cold storage. This can be accomplished either by offloading the logs out of the cloud environment or natively through Microsoft by creating an audit log retention policy.
In addition to enabling audit logging, CISA and FBI strongly encourage organizations to:
Enable Purview Audit (Premium) logging. This logging requires licensing at the G5/E5 level. See Microsoft’s guidance on Assigning Microsoft 365 Licenses to Users for additional information.
Ensure logs are searchable by operators. The relevant logs need to be accessible to operational teams in a platform (e.g., security operations center [SOC] tooling) that enables hunting for this activity and distinguishing it from expected behavior within the environment.
Enable Microsoft 365 Unified Audit Logging (UAL). UAL should be enabled by default, but organizations are encouraged to validate these settings.
Understand your organization’s cloud baseline. Organizations are encouraged to look for outliers and become familiar with baseline patterns to better understand abnormal versus normal traffic.
GENERAL CLOUD MITIGATIONS
All mitigation actions for this activity are the responsibility of Microsoft due to the cloud-based infrastructure affected; however, CISA and the FBI recommend that critical infrastructure organizations implement the following to harden their cloud environments. Although, these mitigations will not prevent this or related activity where actors leverage compromised consumer keys, they will reduce the impact of less sophisticated malicious activity targeting cloud environments. Note: These mitigations align with CISA’s SCuBA Technical Reference Architecture (TRA), which describes essential components of security services and capabilities to secure and harden cloud business applications, including the platforms hosting the applications.
Separate administrator accounts from user accounts according to the National Institute of Standards and Technology’s (NIST’s) guidance, AC-5: Separation of Duties. Only allow designated administrator accounts to be used for administration purposes. If an individual user requires administrative rights over their workstation, use a separate account without administrative access to other hosts.
Collect and store access and security logs for secure cloud access (SCA) solutions, endpoint solutions, cloud applications/platforms and security services, such as firewalls, data loss prevention systems, and intrusion detection systems [SCuBA TRA Section 6.8.1].
Use a telemetry hosting solution (e.g., SIEM solution) that aggregates logs and telemetry data to facilitate internal organization monitoring, auditing, alerting, and threat detection activities [SCuBA TRA Section 6.8.1].
Review contractual relationships with all Cloud Service Providers (CSPs) and ensure contracts include:
Security controls the customer deems appropriate.
Appropriate monitoring and logging of provider-managed customer systems.
Appropriate monitoring of the service provider’s presence, activities, and connections to the customer network.
Notification of confirmed or suspected activity.
REPORTING SUSPICIOUS ACTIVITY
Organizations are encouraged to report suspicious activity to CISA via CISA’s 24/7 Operations Center ([email protected] or 888-282-0870). The FBI encourages recipients of this document to report information concerning suspicious or criminal activity to their local FBI field office or IC3.gov.
The information in this report is being provided “as is” for informational purposes only. The FBI, and CISA do not endorse any commercial product or service, including any subjects of analysis. Any reference to specific commercial products, processes, or services by service mark, trademark, manufacturer, or otherwise, does not constitute or imply endorsement, recommendation, or favoring by the FBI and CISA.
The Cybersecurity and Infrastructure Security Agency (CISA), the Federal Bureau of Investigation (FBI), the Multi-State Information Sharing and Analysis Center (MS-ISAC), and the Canadian Centre for Cyber Security (CCCS) are releasing this joint Cybersecurity Advisory (CSA) in response to cyber threat actors leveraging newly identified Truebot malware variants against organizations in the United States and Canada. As recently as May 31, 2023, the authoring organizations have observed an increase in cyber threat actors using new malware variants of Truebot (also known as Silence.Downloader). Truebot is a botnet that has been used by malicious cyber groups like CL0P Ransomware Gang to collect and exfiltrate information from its target victims.
Previous Truebot malware variants were primarily delivered by cyber threat actors via malicious phishing email attachments; however, newer versions allow cyber threat actors to also gain initial access through exploiting CVE-2022-31199—(a remote code execution vulnerability in the Netwrix Auditor application), enabling deployment of the malware at scale within the compromised environment. Based on confirmation from open-source reporting and analytical findings of Truebot variants, the authoring organizations assess cyber threat actors are leveraging both phishing campaigns with malicious redirect hyperlinks and CVE-2022-31199 to deliver new Truebot malware variants.
The authoring organizations recommend hunting for the malicious activity using the guidance outlined in this CSA, as well as applying vendor patches to Netwrix Auditor (version 10.5—see Mitigations section below).[1] Any organization identifying indicators of compromise (IOCs) within their environment should urgently apply the incident responses and mitigation measures detailed in this CSA and report the intrusion to CISA or the FBI.
For a downloadable copy of IOCs in .xml and .json format, see:
TECHNICAL DETAILS
Note: This advisory uses the MITRE ATT&CK® for Enterprise framework, version 13. See the MITRE ATT&CK Tactics and Techniques section below for cyber threat actors’ activity mapped to MITRE ATT&CK tactics and techniques.
Initial Access and Execution
In recent months, open source reporting has detailed an increase in Truebot malware infections, particularly cyber threat actors using new tactics, techniques, and procedures (TTPs), and delivery methods.[2] Based on the nature of observed Truebot operations, the primary objective of a Truebot infection is to exfiltrate sensitive data from the compromised host(s) for financial gain [TA0010].
Phishing:
Cyber threat actors have historically used malicious phishing emails as the primary delivery method of Truebot malware, which tricks recipients into clicking a hyperlink to execute malware. Cyber threat actors have further been observed concealing email attachments (executables) as software update notifications [T1189] that appear to be legitimate [T1204.002], [T1566.002]. Following interaction with the executable, users will be redirected to a malicious web domain where script files are then executed. Note: Truebot malware can be hidden within various, legitimate file formats that are used for malicious purposes [T1036.008].[3]
Exploitation of CVE-2022-31199:
Though phishing remains a prominent delivery method, cyber threat actors have shifted tactics, exploiting, in observable manner, a remote code execution vulnerability (CVE-2022-31199) in Netwrix Auditor [T1190]—software used for on-premises and cloud-based IT system auditing. Through exploitation of this CVE, cyber threat actors gain initial access, as well as the ability to move laterally within the compromised network [T1210].
Figure 1: CVE-2022-3199 Delivery Method for Truebot
Following the successful download of the malicous file, Truebot renames itself and then loads FlawedGrace onto the host. Please see the FlawedGrace section below for more information on how this remote access tool (RAT) is used in Truebot operations.
After deployment by Truebot, FlawedGrace is able to modify registry [T1112] and print spooler programs [T1547.012] that control the order that documents are loaded to a print queue. FlawedGrace manipulates these features to both escalate privilege and establish persistence.
During FlawedGrace’s execution phase, the RAT stores encrypted payloads [T1027.009] within the registry. The tool can create scheduled tasks and inject payloads into msiexec[.]exe and svchost[.]exe, which are command processes that enable FlawedGrace to establish a command and control (C2) connection to 92.118.36[.]199, for example, as well as load dynamic link libraries (DLLs) [T1055.001] to accomplish privilege escalation.
Several hours post initial access, Truebot has been observed injecting Cobalt Strike beacons into memory [T1055] in a dormant mode for the first few hours prior to initiating additional operations. Please see the Cobalt Strike section below for more information on how this remote access tool (RAT) is used in Truebot operations.
Discovery and Defense Evasion
During the first stage of Truebot’s execution process, it checks the current version of the operating system (OS) with RtlGetVersion and processor architecture using GetNativeSystemInfo [T1082].[4] Note: This variant of Truebot malware is designed with over one gigabyte (GB) of junk code which functions to hinder detection and analysis efforts [T1027.001].
Following the initial checks for system information, Truebot has the capability to enumerate all running processes [T1057], collect sensitive local host data [T1005], and send this data to an encoded data string described below for second-stage execution. Based on IOCs in table 1, Truebot also has the ability to discover software security protocols and system time metrics, which aids in defense evasion, as well as enables synchronization with the compromised system’s internal clock to facilitate scheduling tasks [T1518.001][T1124].
Next, it uses a .JSONIP extension, (e.g., IgtyXEQuCEvAM.JSONIP), to create a thirteen character globally unique identifier (GUID)—a 128-bit text string that Truebot uses to label and organize the data it collects [T1036].
After creating the GUID, Truebot compiles and enumerates running process data into either a base64 or unique hexadecimal encoded string [T1027.001]. Truebot’s main goal is identifying the presence of security debugger tools. However, the presence of identified debugger tools does not change Truebot’s execution process—the data is compiled into a base64 encoded string for tracking and defense evasion purposes [T1082][T1622].
Data Collection and Exfiltration
Following Truebot’s enumeration of running processes and tools, the affected system’s computer and domain name [T1082][T1016], along with the newly generated GUID, are sent to a hard-coded URL in a POST request (as observed in the user-agent string). Note: A user-agent string is a customized HTTP request that includes specific device information required for interaction with web content. In this instance, cyber threat actors can redirect victims to malicious domains and further establish a C2 connection.
The POST request functions as means for establishing a C2 connection for bi-lateral communication. With this established connection, Truebot uses a second obfuscated domain to receive additional payloads [T1105], self-replicate across the environment [T1570], and/or delete files used in its operations [T1070.004]. Truebot malware has the capability to download additional malicious modules [T1105], load shell code [T1620], and deploy various tools to stealthily navigate an infected network.
Associated Delivery Vectors and Tools
Truebot has been observed in association with the following delivery vectors and tools:
Raspberry Robin (Malware)
Raspberry Robin is a wormable malware with links to other malware families and various infection methods, including installation via USB drive [T1091].[5] Raspberry Robin has evolved into one of the largest malware distribution platforms and has been observed deploying Truebot, as well as other post-compromise payloads such as IcedID and Bumblebee malware.[6] With the recent shift in Truebot delivery methods from malicious emails to the exploitation of CVE-2022-31199, a large number of Raspberry Robin infections have leveraged this exploitable CVE.[2]
FlawedGrace is a remote access tool (RAT) that can receive incoming commands [T1059] from a C2 server sent over a custom binary protocol [T1095] using port 443 to deploy additional tools [T1105].[7] Truebot malware has been observed leveraging (and dropping) FlawedGrace via phishing campaigns as an additional payload [T1566.002].[8] Note: FlawedGrace is typically deployed minutes after Truebot malware is executed.
Cobalt Strike is a popular remote access tool (RAT) that cyber threat actors have leveraged—in an observable manner—for a variety of post-exploitation means. Typically a few hours after Truebot’s execution phase, cyber threat actors have been observed deploying additional payloads containing Cobalt Strike beacons for persistence and data exfiltration purposes [T1059].[2] Cyber threat actors use Cobalt Strike to move laterally via remote service session hijacking [T1563.001][T1563.002], collecting valid credentials through LSASS memory credential dumping, or creating local admin accounts to achieve pass the hash alternate authentication [T1003.001][T1550.002].
Teleport (Tool)
Cyber threat actors have been observed using a custom data exfiltration tool, which Talos has named “Teleport.”[2] Teleport is known to evade detection during data exfiltration by using an encryption key hardcoded in the binary and a custom communication protocol [T1095] that encrypts data using advanced encryption standard (AES) and a hardcoded key [T1048][T1573.002]. Furthermore, to maintain its stealth, Teleport limits the data it collects and syncs with outbound organizational data/network traffic [T1029][T1030].
Truebot Malware Indicators of Compromise (IOCs)
Truebot IOCs from May 31, 2023, contain IOCs from cyber threat actors conducting Truebot malspam campaigns. Information is derived from a trusted third party, they observed cyber threat actors from 193.3.19[.]173 (Russia) using a compromised local account to conduct phishing campaigns on May 23, 2023 and spread malware through: https[:]//snowboardspecs[.]com/nae9v, which then promptly redirects the user to: https://www.meditimespharma[.]com/gfghthq/, which a trusted third party has linked to other trending Truebot activity.
After redirecting to https://www.meditimespharma[.]com/gfghthq/, trusted third parties have observed, the cyber threat actors using Truebot to pivot to https://corporacionhardsoft[.]com/images/2/Document_16654.exe, which is a domain associated with snowboardspecs[.]com. This malicious domain has been linked to UNC4509, a threat cluster that has been known to use traffic distribution systems (TDS) to redirect users to either a benign or malicious website to facilitate their malicious phishing campaigns in May 2023.
According to trusted third parties, the MD5 Hash: 6164e9d297d29aa8682971259da06848 is downloaded from https://corporacionhardsoft.com/images/2/Document_16654[.]exe, and has been flagged by numerous security vendors, as well as is linked to UNC4509 Truebot campaigns. Note: These IOCs are associated with Truebot campaigns used by Graceful Spider to deliver FlawedGrace and LummaStealer payloads in May of 2023.
After Truebot is downloaded, the malware copies itself to C:\Intel\RuntimeBroker.exe and—based on trusted third party analysis—links to https://essadonio.com/538332[.]php (which is linked to 45.182.189[.]71 (Panama) and is associated with other trending Truebot malware campaigns from May 2023).
Please reference table 1 for IOCs described in the paragraph above.
See Tables 6-16 for all referenced cyber threat actor tactics and techniques for enterprise environments in this advisory. For assistance with mapping malicious cyber activity to the MITRE ATT&CK framework, see CISA and MITRE ATT&CK’s Best Practices for MITRE ATT&CK Mapping and CISA’s Decider Tool.
Cyber threat actors are exploiting Netwrix vulnerability CVE-2022-31199 for initial access with follow-on capabilities of lateral movement through remote code execution.
Truebot has the ability to discover system time metrics, which aids in enables synchronization with the compromised system’s internal clock to facilitate scheduling tasks.
Cyber threat actors blend exfiltrated data with network traffic to evade detection.
Cyber threat actors use the Teleport tool to exfiltrate data over a C2 protocol.
DETECTION METHODS
CISA and authoring organizations recommend that organizations review and implement the following detection signatures, along with: Win/malicious_confidence100% (W), Trojan:Win32/Tnega!MSR, and Trojan.Agent.Truebot.Gen, as well as YARA rules below to help detect Truebot malware.
Detection Signatures
Figure 2: Snort Signature to Detect Truebot Malware
alert tcp any any -> any any (msg:”TRUEBOT: Client HTTP Header”; sid:x; rev:1; flow:established,to_server; content:”Mozilla/112.0 (compatible|3b 20 4d 53 49 45 20 31 31 2e 30 3b 20 57 69 6e 64 6f 77 73 20 4e 54 20 31 30 2e 30 30 29|”; http_header; nocase; classtype:http-header; metadata:service http;)
YARA Rules
CISA developed the following YARA to aid in detecting the presence of Truebot Malware.
Additional YARA rules for detecting Truebot malware can be referenced from GitHub.[9]
INCIDENT RESPONSE
The following steps are recommended if organizations detect a Truebot malware infection and compromise:
Quarantine or take offline potentially affected hosts.
Collect and review artifacts such as running processes/services, unusual authentications, and recent network connections.
Provision new account credentials.
Reimage compromised host.
Report the compromise to CISA via CISA’s 24/7 Operations Center ([email protected] or 888-282-0870) or contact your local FBI field office. State, local, tribal, or territorial government entities can also report to MS-ISAC ([email protected] or 866-787-4722).
For additional best practices, see CISA’s Cross-Sector Cybersecurity Performance Goals (CPGs). The CPGs, developed by CISA and the National Institute of Standards and Technology (NIST), are a prioritized subset of IT and OT security practices that can meaningfully reduce the likelihood and impact of known cyber risks and common TTPs. Because the CPGs are a subset of best practices, CISA and co-sealers recommend software manufacturers implement a comprehensive information security program based on a recognized framework, such as the NIST Cybersecurity Framework (CSF).
Netwrix recommends using their Auditor application only on internally facing networks. System owners that don’t follow this recommendation, and use the application in externally facing instances, are at increased risk to having CVE-2022-31199 exploited on their systems.
Reduce threat of malicious actors using remote access tools by:
Implementing application controls to manage and control execution of software, including allowlisting remote access programs.
Application controls should prevent installation and execution of portable versions of unauthorized remote access and other software. A properly configured application allowlisting solution will block any unlisted application execution. Allowlisting is important because antivirus solutions may fail to detect the execution of malicious portable executables when the files use any combination of compression, encryption, or obfuscation.
Disable command-line and scripting activities and permissions [CPG 2.N].
Restrict the use of PowerShell by using Group Policy, and only grant to specific users on a case-by-case basis. Typically, only those users or administrators who manage the network or Windows operating systems (OSs) should be permitted to use PowerShell [CPG 2.E].
Update Windows PowerShell or PowerShell Core to the latest version and uninstall all earlier PowerShell versions. Logs from Windows PowerShell prior to version 5.0 are either non-existent or do not record enough detail to aid in enterprise monitoring and incident response activities [CPG 1.E, 2.S, 2.T].
PowerShell logs contain valuable data, including historical OS and registry interaction and possible IOCs of a cyber threat actor’s PowerShell use.
Ensure PowerShell instances, using the latest version, have module, script block, and transcription logging enabled (enhanced logging).
The two logs that record PowerShell activity are the PowerShell Windows Event Log and the PowerShell Operational Log. The authoring organizations recommend turning on these two Windows Event Logs with a retention period of at least 180 days. These logs should be checked on a regular basis to confirm whether the log data has been deleted or logging has been turned off. Set the storage size permitted for both logs to as large as possible.
Configure the Windows Registry to require User Account Control (UAC) approval for any PsExec operations requiring administrator privileges to reduce the risk of lateral movement by PsExec.
Review domain controllers, servers, workstations, and active directories for new and/or unrecognized accounts [CPG 4.C].
Audit user accounts with administrative privileges and configure access controls according to the principle of least privilege (PoLP) [CPG 2.E].
Reduce the threat of credential compromise via the following:
Place domain admin accounts in the protected users’ group to prevent caching of password hashes locally.
Implement Credential Guard for Windows 10 and Server 2016 (Refer to Microsoft: Manage Windows Defender Credential Guard for more information). For Windows Server 2012R2, enable Protected Process Light for Local Security Authority (LSA).
Refrain from storing plaintext credentials in scripts.
Implement time-based access for accounts set at the admin level and higher [CPG 2.A, 2.E]. For example, the Just-in-Time (JIT) access method provisions privileged access when needed and can support enforcement of the principle of least privilege (as well as the Zero Trust model). This is a process where a network-wide policy is set in place to automatically disable admin accounts at the Active Directory (AD) level when the account is not in direct need. Individual users may submit their requests through an automated process that grants them access to a specified system for a set timeframe when they need to support the completion of a certain task.
In addition, CISA, FBI, MS-ISAC, and CCCS recommend network defenders apply the following mitigations to limit potential adversarial use of common system and network discovery techniques and to reduce the impact and risk of compromise by ransomware or data extortion actors:
Disable File and Printer sharing services. If these services are required, use strong passwords or Active Directory authentication.
Implement a recovery plan to maintain and retain multiple copies of sensitive or proprietary data and servers in a physically separate, segmented, and secure location (e.g., hard drive, storage device, or the cloud).
Maintain offline backups of data and regularly maintain backup and restoration (daily or weekly at minimum). By instituting this practice, an organization minimizes the impact of disruption to business practices as they can retrieve their data [CPG 2.R].
Refrain from requiring password changes more frequently than once per year. Note: NIST guidance suggests favoring longer passwords instead of requiring regular and frequent password resets. Frequent password resets are more likely to result in users developing password “patterns” cyber criminals can easily decipher.
Require administrator credentials to install software.
Require phishing-resistant multifactor authentication for all services to the extent possible, particularly for webmail, virtual private networks, and accounts that access critical systems [CPG 2.H].
Keep all operating systems, software, and firmware up to date. Timely patching is one of the most efficient and cost-effective steps an organization can take to minimize its exposure to cybersecurity threats. Organizations should patch vulnerable software and hardware systems within 24 to 48 hours of vulnerability disclosure. Prioritize patching known exploited vulnerabilities in internet-facing systems [CPG 1.E].
Segment networks to prevent the spread of ransomware. Network segmentation can help prevent the spread of ransomware by controlling traffic flows between—and access to various subnetworks, restricting further lateral movement [CPG 2.F].
Identify, detect, and investigate abnormal activity and potential traversal of the indicated ransomware with a networking monitoring tool. To aid in detecting ransomware, implement a tool that logs and reports all network traffic, including lateral movement activity on a network. Endpoint detection and response (EDR) tools are particularly useful for detecting lateral connections, as they have insight into common and uncommon network connections for each host [CPG 3.A].
Install, regularly update, and enable real time detection for antivirus software on all hosts.
Consider adding an email banner to emails received from outside your organization [CPG 2.M].
Ensure all backup data is encrypted, immutable (i.e., cannot be altered or deleted), and covers the entire organization’s data infrastructure [CPG 2.K, 2.L, 2.R].
VALIDATE SECURITY CONTROLS
In addition to applying mitigations, CISA recommends exercising, testing, and validating your organization’s security program against the threat behaviors mapped to the MITRE ATT&CK for Enterprise framework in this advisory. CISA recommends testing your existing security controls inventory to assess how they perform against the ATT&CK techniques described in this advisory.
To get started:
Select an ATT&CK technique described in this advisory (see Tables 5-13).
Align your security technologies against the technique.
Test your technologies against the technique.
Analyze your detection and prevention technologies’ performance.
Repeat the process for all security technologies to obtain a set of comprehensive performance data.
Tune your security program, including people, processes, and technologies, based on the data generated by this process.
CISA recommends continually testing your security program, at scale, in a production environment to ensure optimal performance against the MITRE ATT&CK techniques identified in this advisory.
VMware Carbon Black and Mandiant contributed to this CSA.
DISCLAIMER
The information in this report is being provided “as is” for informational purposes only. CISA and authoring agencies do not endorse any commercial product or service, including any subjects of analysis. Any reference to specific commercial products, processes, or services by service mark, trademark, manufacturer, or otherwise, does not constitute or imply endorsement, recommendation, or favoring by CISA, and co-sealers.
https://spinsafe.com/wp-content/uploads/2016/11/spinsafelogo-1.png00SecureTechhttps://spinsafe.com/wp-content/uploads/2016/11/spinsafelogo-1.pngSecureTech2023-07-07 01:30:072023-07-07 01:30:07Increased Truebot Activity Infects U.S. and Canada Based Networks
In 2022, LockBit was the most deployed ransomware variant across the world and continues to be prolific in 2023. Since January 2020, affiliates using LockBit have attacked organizations of varying sizes across an array of critical infrastructure sectors, including financial services, food and agriculture, education, energy, government and emergency services, healthcare, manufacturing, and transportation. LockBit ransomware operation functions as a Ransomware-as-a-Service (RaaS) model where affiliates are recruited to conduct ransomware attacks using LockBit ransomware tools and infrastructure. Due to the large number of unconnected affiliates in the operation, LockBit ransomware attacks vary significantly in observed tactics, techniques, and procedures (TTPs). This variance in observed ransomware TTPs presents a notable challenge for organizations working to maintain network security and protect against a ransomware threat.
The Cybersecurity and Infrastructure Security Agency (CISA), Federal Bureau of Investigation (FBI), the Multi-State Information Sharing and Analysis Center (MS-ISAC), and the following international partners, hereafter referred to as “authoring organizations,” are releasing this Cybersecurity Advisory (CSA) detailing observed activity in LockBit ransomware incidents and providing recommended mitigations to enable network defenders to proactively improve their organization’s defenses against this ransomware operation.
Australian Cyber Security Centre (ACSC)
Canadian Centre for Cyber Security (CCCS)
United Kingdom’s National Cyber Security Centre (NCSC-UK)
National Cybersecurity Agency of France (ANSSI)
Germany’s Federal Office for Information Security (BSI)
New Zealand’s Computer Emergency Response Team (CERT NZ) and National Cyber Security Centre (NCSC NZ)
The authoring organizations encourage the implementation of the recommendations found in this CSA to reduce the likelihood and impact of future ransomware incidents.
TECHNICAL DETAILS
Note: This advisory uses the MITRE ATT&CK for Enterprise framework, version 13.1. See the MITRE ATT&CK Tactics and Techniques section for tables of LockBit’s activity mapped to MITRE ATT&CK® tactics and techniques.
Introduction
The LockBit RaaS and its affiliates have negatively impacted organizations, both large and small, across the world. In 2022, LockBit was the most active global ransomware group and RaaS provider in terms of the number of victims claimed on their data leak site. [1] A RaaS cybercrime group maintains the functionality of a particular ransomware variant, sells access to that ransomware variant to individuals or groups of operators (often referred to as “affiliates”), and supports affiliates’ deployment of their ransomware in exchange for upfront payment, subscription fees, a cut of profits, or a combination of upfront payment, subscription fees, and a cut of profits. Some of the methods LockBit has used to successfully attract affiliates include, but are not limited to:
Assuring payment by allowing affiliates to receive ransom payments before sending a cut to the core group; this practice stands in stark contrast to other RaaS groups who pay themselves first and then disburse the affiliates’ cut.
Disparaging other RaaS groups in online forums.
Engaging in publicity-generating activities stunts, such as paying people to get LockBit tattoos and putting a $1 million bounty on information related to the real-world identity of LockBit’s lead who goes by the persona “LockBitSupp.”
Developing and maintaining a simplified, point-and-click interface for its ransomware, making it accessible to those with a lower degree of technical skill. [2, 3]
LockBit has been successful through innovation and ongoing development of the group’s administrative panel and the RaaS supporting functions. In parallel, affiliates that work with LockBit and other notable variants are constantly revising the TTPs used for deploying and executing ransomware.
Table 1 shows LockBit RaaS’s innovation and development.
Table 1: Evolution of LockBit RaaS
Date
Event
September 2019
First observed activity of ABCD ransomware, the predecessor to LockBit. [4]
January 2020
LockBit-named ransomware first seen on Russian-language based cybercrime forums.
June 2021
Appearance of LockBit version 2 (LockBit 2.0), also known as LockBit Red including StealBit, a built-in information-stealing tool.
October 2021
Introduction of LockBit Linux-ESXi Locker version 1.0 expanding capabilities to target systems to Linux and VMware ESXi. [5]
March 2022
Emergence of LockBit 3.0, also known as LockBit Black, that shares similarities with BlackMatter and Alphv (also known as BlackCat) ransomware.
September 2022
Non-LockBit affiliates able to use LockBit 3.0 after its builder was leaked. [2, 6]
January 2023
Arrival of LockBit Green incorporating source code from Conti ransomware. [7]
April 2023
LockBit ransomware encryptors targeting macOS seen on VirusTotal [8, 9]
LockBit 2.0, LockBit 3.0, LockBit Green, and LockBit Linux-ESXi Locker are still available for affiliates’ use on LockBit’s panel.
LockBit Statistics
Percentage of ransomware incidents attributed to LockBit:
Australia: From April 1, 2022, to March 31, 2023, LockBit made up 18% of total reported Australian ransomware incidents. This figure includes all variants of LockBit ransomware, not solely LockBit 3.0.
Canada: In 2022, LockBit was responsible for 22% of attributed ransomware incidents in Canada.[10]
New Zealand: In 2022, CERT NZ received 15 reports of LockBit ransomware, representing 23% of 2022 ransomware reports.
United States: In 2022, 16% of the State, Local, Tribal, and Tribunal (SLTT) government ransomware incidents reported to the MS-ISAC were identified as LockBit attacks. This included ransomware incidents impacting municipal governments, county governments, public higher education and K-12 schools, and emergency services (e.g., law enforcement).
Number of LockBit ransomware attacks in the U.S. since 2020:
About 1,700 attacks according to the FBI.
Total of U.S. ransoms paid to LockBit:
Approximately $91M since LockBit activity was first observed in the U.S. on January 5, 2020.
Earliest observed LockBit activity:
Australia: The earliest documented occurrence of LockBit 3.0 was in early August 2022.
Canada: The first recorded instance of LockBit activity in Canada was in March 2020.
New Zealand: The first recorded incident involving LockBit ransomware was in March 2021.
United States: LockBit activity was first observed on January 5, 2020.
Most recently observed LockBit activity:
Australia: April 21, 2023.
New Zealand: February 2023.
United States: As recently as May 25, 2023.
Operational activity related to LockBit in France
Since the first case in July 2020 to present, ANSSI has handled 80 alerts linked to the LockBit ransomware, which accounts for 11% of all ransomware cases handled by ANSSI in that period. In about 13% of those cases, ANSSI was not able to confirm nor deny the breach of its constituents’ networks – as the alerts were related to the threat actor’s online claims. So far, 69 confirmed incidents have been handled by ANSSI. Table 2 shows the LockBit activity observed by ANSSI versus overall ransomware activity tracked by the Computer Emergency Response Team-France (CERT-FR).
Table 2: ANSSI-Observed LockBit vs. Overall Ransomware Activity
Year
Number of Incidents
Percentage of CERT-FR’s Ransomware-Related Activity
2020 (from July)
4
2%
2021
20
10%
2022
30
27%
2023
15
27%
Total (2020-2023)
69
11%
Table 3 shows the number of instances different LockBit strains were observed by ANSSI from July 2020 to present.
Table 3: ANSSI-Observed LockBit Strain and Number of Instances
Name of the Strain*
Number of Instances
LockBit 2.0 (LockBit Red)
26
LockBit 3.0 (LockBit Black)
23
LockBit
21
LockBit Green
1
LockBit (pre-encryption)
1
Total
72**
* Name either obtained from ANSSI’s or the victim’s investigations ** Includes incidents with multiple strains
Figure 1: ANSSI-Observed LockBit Strains by Year
From the incidents handled, ANSSI can infer that LockBit 3.0 widely took over from LockBit 2.0 and the original LockBit strain from 2022. In two cases, victims were infected with as many as three different strains of LockBit (LockBit 2.0/Red, LockBit 3.0/Black, and LockBit Green).
Leak Sites
The authoring agencies observe data leak sites, where attackers publish the names and captured data of victims if they do not pay ransom or hush money. Additionally, these sites can be used to record alleged victims who have been threatened with a data leak. The term ‘victims’ may include those who have been attacked, or those who have been threatened or blackmailed (with the attack having taken place).
The leak sites only show the portion of LockBit affiliates’ victims subjected to secondary extortion. Since 2021, LockBit affiliates have employed double extortion by first encrypting victim data and then exfiltrating that data while threatening to post that stolen data on leak sites. Because LockBit only reveals the names and leaked data of victims who refuse to pay the primary ransom to decrypt their data, some LockBit victims may never be named or have their exfiltrated data posted on leak sites. As a result, the leak sites reveal a portion of LockBit affiliates’ total victims. For these reasons, the leak sites are not a reliable indicator of when LockBit ransomware attacks occurred. The date of data publication on the leak sites may be months after LockBit affiliates actually executed ransomware attacks.
Up to the Q1 2023, a total of 1,653 alleged victims were observed on LockBit leak sites. With the introduction of LockBit 2.0 and LockBit 3.0, the leak sites have changed, with some sources choosing to differentiate leak sites by LockBit versions and others ignoring any differentiation. Over time, and through different evolutions of LockBit, the address and layout of LockBit leak sites have changed and are aggregated under the common denominator of the LockBit name. The introduction of LockBit 2.0 at the end of the Q2 2021 had an immediate impact on the cybercriminal market due to multiple RaaS operations shutting down in May and June 2021 (e.g., DarkSide and Avaddon). LockBit competed with other RaaS operations, like Hive RaaS, to fill the gap in the cybercriminal market leading to an influx of LockBit affiliates. Figure 2 shows the alleged number of victims worldwide on LockBit leak sites starting in Q3 2020. Figure 2 shows the alleged number of victims worldwide on LockBit leak sites starting in Q3 2020.
Figure 2: Alleged Number of Victims Worldwide on LockBit Leak Sites
Tools
During their intrusions, LockBit affiliates have been observed using various freeware and open-source tools that are intended for legal use. When repurposed by LockBit, these tools are then used for a range of malicious cyber activity, such as network reconnaissance, remote access and tunneling, credential dumping, and file exfiltration. Use of PowerShell and batch scripts are observed across most intrusions, which focus on system discovery, reconnaissance, password/credential hunting, and privilege escalation. Artifacts of professional penetration-testing tools such as Metasploit and Cobalt Strike have also been observed.
Table 4 shows a list of legitimate freeware and open-source tools LockBit affiliates have repurposed for ransomware operations. The legitimate freeware and open-source tools mentioned in this product are all publicly available and legal. The use of these tools by a threat actor should not be attributed to the freeware and open-source tools, absent specific articulable facts tending to show they are used at the direction or under the control of a threat actor.
Table 4: Freeware and Open-Source Tools Used by LockBit Affiliates
Tool
Intended Use
Repurposed Use by LockBit Affiliates
MITRE ATT&CK ID
7-zip
Compresses files into an archive.
Compresses data to avoid detection before exfiltration.
Common Vulnerabilities and Exposures (CVEs) Exploited
Based on secondary sources, it was noted that affiliates exploit older vulnerabilities like CVE-2021-22986, F5 iControl REST unauthenticated Remote Code Execution Vulnerability, as well as newer vulnerabilities such as:
When LockBit affiliates target an organization responsible for managing other organizations’ networks, CERT NZ has observed LockBit affiliates attempt secondary ransomware extortion after detonation of the LockBit variant on the primary target. Once the primary target is hit, LockBit affiliates then attempt to extort the companies that are customers of the primary target. This extortion is in the form of secondary ransomware that locks down services those customers consume. Additionally, the primary target’s customers may be extorted by LockBit affiliates threatening to release those customers’ sensitive information.
MITRE ATT&CK Tactics and Techniques
Tables 5-16 show the LockBit affiliate tactics and techniques referenced in this advisory.
LockBit affiliates may perform software packing or virtual machine software protection to conceal their code. Blister Loader has been used for such purpose.
LockBit affiliates will enumerate system information to include hostname, host configuration, domain information, local drive configuration, remote shares, and mounted external storage devices.
System Location Discovery: System Language Discovery
LockBit affiliates use (1) Rclone, an open-source command line cloud storage manager or FreeFileSync to exfiltrate and (2) MEGA, a publicly available file sharing service for data exfiltration.
Table 16: LockBit Affiliates’ ATT&CK Techniques for Enterprise – Impact
The authoring organizations recommend implementing the mitigations listed below to improve their cybersecurity posture to better defend against LockBit’s activity. These mitigations align with the Cross-Sector Cybersecurity Performance Goals (CPGs) developed by CISA and the National Institute of Standards and Technology (NIST). The CPGs provide a minimum set of practices and protections that CISA and NIST recommend all organizations implement. CISA and NIST based the CPGs on existing cybersecurity frameworks and guidance to protect against the most common and impactful threats, tactics, techniques, and procedures. Visit CISA’s Cross-Sector Cybersecurity Performance Goals for more information on the CPGs, including additional recommended baseline protections.
The listed mitigations are ordered by MITRE ATT&CK tactic. Mitigations that apply to multiple MITRE ATT&CK tactics are listed under the tactic that occurs earliest in an incident’s lifecycle. For example, account use polices are mitigations for initial access, persistence, privilege escalation, and credential access but would be listed under initial access mitigations.
Initial Access
Consider implementing sandboxed browsers to protect systems from malware originating from web browsing. Sandboxed browsers isolate the host machine from malicious code.
Require all accounts with password logins (e.g., service account, admin accounts, and domain admin accounts) to comply with NIST standards for developing and managing password policies [CPG 2.L].
Enforce use of longer passwords consisting of at least 15 characters in length [CPG 2.B, 2.C].
Store passwords in a salted and hashed format using industry-recognized password hashing algorithms.
Prevent use of commonly used or known-compromised passwords [CPG 2.C].
Refrain from requiring password changes more frequently than once per year. Note: NIST guidance suggests favoring longer passwords instead of requiring regular and frequent password resets. Frequent password resets are more likely to result in users developing password “patterns” cyber criminals can easily decipher.
Require administrator credentials to install software [CPG 2.Q].
Implement filters at the email gateway to filter out emails with known malicious indicators, such as known malicious subject lines, and block suspicious IP addresses at the firewall [CPG 2.M].
Install a web application firewall and configure with appropriate rules to protect enterprise assets.
Segment networks to prevent the spread of ransomware. Network segmentation can help prevent the spread of ransomware by controlling traffic flows between—and access to—various subnetworks and by restricting adversary lateral movement. Isolate web-facing applications to further minimize the spread of ransomware across a network [CPG 2.F].
Follow the least-privilege best practice by requiring administrators to use administrative accounts for managing systems and use simple user accounts for non-administrative tasks [CPG 2.E].
Enforce the management of and audit user accounts with administrative privileges. Configure access controls according to the principle of least privilege [CPG 2.E].
Implement time-based access for accounts set at the admin level and higher. For example, the Just-in-Time (JIT) access method provisions privileged access when needed and can support enforcement of the principle of least privilege (as well as the Zero Trust model). This is a process where a network-wide policy is set in place to automatically disable admin accounts at the Active Directory level when the account is not in direct need. Individual users may submit their requests through an automated process that grants them access to a specified system for a set timeframe when they need to support the completion of a certain task.
Keep all operating systems, software, and firmware up to date. Timely patching is one of the most efficient and cost-effective steps an organization can take to minimize its exposure to cybersecurity threats. Public-facing applications must be patched in a timely manner as vulnerabilities can often be exploited directly by the threat actor. By closely monitoring the threat landscape, threat actors often take advantage of vulnerabilities before systems are patched. Organizations should patch vulnerable software and hardware systems within 24 to 48 hours from when a vulnerability is disclosed. Prioritize patching known exploited vulnerabilities in internet-facing systems [CPG 1.E].
Restrict service accounts from remotely accessing other systems. Configure group policy to Deny log on locally, Deny log on through Terminal Services, and Deny access to this computer from the network for all service accounts to limit the ability for compromised service accounts to be used for lateral movement.
Block direct internet access for administration interfaces (e.g., application protocol interface (API)) and for remote access.
Require phishing-resistant multifactor authentication (MFA) for all services to the extent possible, particularly for webmail, virtual private networks, and privileged accounts that access critical systems [CPG 2.H].
Consolidate, monitor, and defend internet gateways.
Install, regularly update, and enable real-time detection for antivirus software on all hosts.
Raise awareness for phishing threats in your organization. Phishing is one of the primary infection vectors in ransomware campaigns, and all employees should receive practical training on the risks associated with the regular use of email. With the rise of sophisticated phishing methods, such as using stolen email communication or artificial intelligence (AI) systems such as ChatGPT, the distinction between legitimate and malicious emails becomes more complex. This particularly applies to employees from corporate divisions that have to deal with a high volume of external email communication (e.g., staff recruitment) [CPG 2.I, 2.J].
Consider adding an external email warning banner for emails sent to orreceived from outside of your organization [CPG 2.M].
Review internet-facing services and disable any services that are no longer a businessrequirement to be exposed or restrict access to only those users with an explicit requirement to access services, such as SSL, VPN, or RDP. If internet-facing services must be used, control access by only allowing access from an admin IP range [CPG 2.X].
Review domain controllers, servers, workstations, and active directories for new and/or unrecognized accounts.
Regularly verify the security level of the Active Directory domain by checking for misconfigurations.
Execution
Develop and regularly update comprehensive network diagram(s) that describes systems and data flows within your organization’s network(s) [CPG 2.P].
Control and restrict network connections accordingly with a network flow matrix.
PowerShell logs contain valuable data, including historical OS, registry interaction, and possibility of a threat actor’s PowerShell use.
Ensure PowerShell instances are configured to use the latest version, and have module, script block, and transcription logging enabled (enhanced logging).
The two logs that record PowerShell activity are the PowerShell Windows Event Log and the PowerShell Operational Log. It is recommended to turn on these two Windows Event Logs with a retention period of at least 180 days. These logs should be checked on a regular basis to confirm whether the log data has been deleted or logging has been turned off. Set the storage size permitted for both logs to as large as reasonably practical.
Configure the Windows Registry to require UAC approval for any PsExec operations requiring administrator privileges to reduce the risk of lateral movement by PsExec.
Privilege Escalation
Disable command-line and scripting activities and permissions. Privilege escalation and lateral movement often depend on software utilities running from the command line. If threat actors are not able to run these tools, they will have difficulty escalating privileges and/or moving laterally [CPG 2.N].
Enable Credential Guard to protect your Windows system credentials. This is enabled by default on Windows 11 Enterprise 22H2 and Windows 11 Education 22H2. Credential Guard prevents credential dumping techniques of the Local Security Authority (LSA) secrets. Be aware that enabling this security control has some downsides. In particular, you can no longer use New Technology Local Area Network (LAN) Manager (NTLM) classic authentication single sign-on, Kerberos unconstrained delegation, as well as Data Encryption Standard (DES) encryption.
Implement Local Administrator Password Solution (LAPS) where possible if your OS is older than Windows Server 2019 and Windows 10 as these versions do not have LAPS built in. NOTE: The authoring organizations recommend organizations upgrade to Windows Server 2019 and Windows 10 or greater.
Defense Evasion
Apply local security policies to control application execution (e.g., Software Restriction Policies (SRP), AppLocker, Windows Defender Application Control (WDAC)) with a strict allowlist.
Establish an application allowlist of approved software applications and binaries that are allowed to be executed on a system. This measure prevents unwanted software to be run. Usually, application allowlist software can also be used to define blocklists so that the execution of certain programs can be blocked, for example cmd.exe or PowerShell.exe [CPG 2.Q].
Credential Access
Restrict NTLM uses with security policies and firewalling.
Discovery
Disable unusedports. Disable ports that are not being used for business purposes (e.g., RDP-TCP Port 3389). Close unused RDP ports.
Lateral Movement
Identify Active Directory control paths and eliminate the most critical among them according to the business needs and assets.
Identify, detect, and investigate abnormal activity and potential traversal of the indicated ransomware with a networking monitoring tool. To aid in detecting the ransomware, implement a tool that logs and reports all network traffic, including lateral movement activity on a network [CPG 1.E]. EDR tools are particularly useful for detecting lateral connections as they have insight into common and uncommon network connections for each host.
Command and Control
Implement a tiering model by creating trust zones dedicated to an organization’s most sensitive assets.
VPN access should not be considered as a trusted network zone. Organizations should instead consider moving to zero trust architectures.
Exfiltration
Block connections to known malicious systems by using a Transport Layer Security (TLS) Proxy. Malware often uses TLS to communicate with the infrastructure of the threat actor. By using feeds for known malicious systems, the establishment of a connection to a C2 server can be prevented.
Use web filtering or a Cloud Access Security Broker (CASB) to restrict or monitor access to public-file sharing services that may be used to exfiltrate data from a network.
Impact
Implement a recovery plan to maintain and retain multiple copies of sensitive or proprietary data and servers in a physically separate, segmented, and secure location (e.g., hard drive, storage device, the cloud) [CPG 2.R].
Maintain offline backups of data, and regularly maintain backup and restoration (daily or weekly at the minimum). By instituting this practice, the organization ensures they will not be severely interrupted, and/or only have irretrievable data [CPG 2.R]. ACSC recommends organizations follow the 3-2-1 backup strategy in which organizations have three copies of data (one copy of production data and two backup copies) on two different media, such as disk and tape, with one copy kept off-site for disaster recovery.
Ensure all backup data is encrypted, immutable (i.e., cannot be altered or deleted), and covers the entire organization’s data infrastructure [CPG 2.K, 2.R].
Implement Mitigations for Defense-in-Depth
Implementing multiple mitigations within a defense-in-depth approach can help protect against ransomware, such as LockBit. CERT NZ explains How ransomware happens and how to stop it by applying mitigations, or critical controls, to provide a stronger defense to detect, prevent, and respond to ransomware before an organization’s data is encrypted. By understanding the most common attack vectors, organizations can identify gaps in network defenses and implement the mitigations noted in this advisory to harden organizations against ransomware attacks. In Figure 3, a ransomware attack is broken into three phases:
Initial Access where the cyber actor is looking for a way into a network.
Consolidation and Preparation when the actor is attempting to gain access to all devices.
Impact on Target where the actor is able to steal and encrypt data and then demand ransom.
Figure 3 shows the mitigations/critical controls, as various colored hexagons, working together to stop a ransomware attacker from accessing a network to steal and encrypt data. In the Initial Access phase, mitigations working together to deny an attacker network access include securing internet-exposed services, patching devices, implementing MFA, disabling macros, employing application allowlisting, and using logging and alerting. In the Consolidation and Preparation phase, mitigations working together to keep an attacker from accessing network devices are patching devices, using network segmentation, enforcing the principle of least privilege, implementing MFA, and using logging and alerting. Finally, in the Impact on Target phase, mitigations working together to deny or degrade an attacker’s ability to steal and/or encrypt data includes using logging and alerting, using and maintaining backups, and employing application allowlisting.
Critical Controls Key
Figure 3: Stopping Ransomware Using Layered Mitigations
Validate Security Controls
In addition to applying mitigations, the authoring organizations recommend exercising, testing, and validating your organization’s security program against the threat behaviors mapped to the MITRE ATT&CK for Enterprise framework in this advisory. The authoring organizations recommend testing your existing security controls inventory to assess how they perform against the ATT&CK techniques described in this advisory.
To get started:
Select an ATT&CK technique described in this advisory (see Tables 5-16).
Align your security technologies against the technique.
Test your technologies against the technique.
Analyze your detection and prevention technologies performance.
Repeat the process for all security technologies to obtain a set of comprehensive performance data.
Tune your security program, including people, processes, and technologies, based on the data generated by this process.
The authoring organizations recommend continually testing your security program, at scale, in a production environment to ensure optimal performance against the MITRE ATT&CK techniques identified in this advisory.
Resources
ACSC:
CISA:
CISA, NSA, FBI, and MS-ISAC:
See the #StopRansomware Guide developed through the Joint Ransomware Task Force (JRTF) to provide a one-stop resource to help organizations reduce the risk of ransomware incidents through best practices to detect, prevent, respond, and recover, including step-by-step approaches to address potential attacks.
FBI and CISA:
MS-ISAC:
NCSC-UK
BSI:
CCCS:
CERT NZ:
NCSC NZ:
Reporting
The authoring organizations do not encourage paying ransom, as payment does not guarantee victim files will be recovered. Furthermore, payment may also embolden adversaries to target additional organizations, encourage other criminal actors to engage in the distribution of ransomware, and/or fund illicit activities. Regardless of whether you or your organization have decided to pay the ransom, the authoring organizations urge you to promptly report ransomware incidents to your country’s respective authorities.
Australia: Australian organizations that have been impacted or require assistance in regard to a ransomware incident can contact ACSC via 1300 CYBER1 (1300 292 371), or by submitting a report to cyber.gov.au.
Canada: Canadian victims of ransomware are encouraged to consider reporting cyber incidents to law enforcement (e.g., local police or the Canadian Anti-Fraud Centre) as well as to the Canadian Centre for Cyber Security online via My Cyber Portal.
France:
Germany: German victims of ransomware are encouraged to consider reporting cyber incidents to law enforcement (e.g., local police or the Central Contact Point for Cybercrime as well as to the Federal Office for Information Security (BSI) via the Reporting and Information Portal.
Report ransomware incidents to a local FBI Field Office or CISA’s 24/7 Operations Center at [email protected], cisa.gov/report, or (888) 282-0870. When available, please include the information regarding the incident: date, time, and location of the incident; type of activity; number of people affected; type of equipment used for the activity; the name of the submitting company or organization; and a designated point of contact.
United Kingdom: UK organizations should report any suspected compromises to NCSC.
Disclaimer
The information in this report is being provided “as is” for informational purposes only. The authoring organizations do not endorse any commercial product or service, including any subjects of analysis. Any reference to specific commercial products, processes, or services by service mark, trademark, manufacturer, or otherwise, does not constitute or imply endorsement, recommendation, or favoring by the authoring organizations.
Note: this joint Cybersecurity Advisory (CSA) is part of an ongoing #StopRansomware effort to publish advisories for network defenders that detail various ransomware variants and ransomware threat actors. These #StopRansomware advisories include recently and historically observed tactics, techniques, and procedures (TTPs) and indicators of compromise (IOCs) to help organizations protect against ransomware. Visit stopransomware.gov to see all #StopRansomware advisories and to learn more about other ransomware threats and no-cost resources.
Actions to take today to mitigate cyber threats from CL0P ransomware:
Take an inventory of assets and data, identifying authorized and unauthorized devices and software.
Grant admin privileges and access only when necessary, establishing a software allow list that only executes legitimate applications.
Monitor network ports, protocols, and services, activating security configurations on network infrastructure devices such as firewalls and routers.
Regularly patch and update software and applications to their latest versions, and conduct regular vulnerability assessments.
The Federal Bureau of Investigation (FBI) and the Cybersecurity and Infrastructure Security Agency (CISA) are releasing this joint CSA to disseminate known CL0P ransomware IOCs and TTPs identified through FBI investigations as recently as June 2023.
According to open source information, beginning on May 27, 2023, CL0P Ransomware Gang, also known as TA505, began exploiting a previously unknown SQL injection vulnerability (CVE-2023-34362) in Progress Software’s managed file transfer (MFT) solution known as MOVEit Transfer. Internet-facing MOVEit Transfer web applications were infected with a web shell named LEMURLOOT, which was then used to steal data from underlying MOVEit Transfer databases. In similar spates of activity, TA505 conducted zero-day-exploit-driven campaigns against Accellion File Transfer Appliance (FTA) devices in 2020 and 2021, and Fortra/Linoma GoAnywhere MFT servers in early 2023.
FBI and CISA encourage organizations to implement the recommendations in the Mitigations section of this CSA to reduce the likelihood and impact of CL0P ransomware and other ransomware incidents.
Download the PDF version of this report:
TECHNICAL DETAILS
Note: This advisory uses the MITRE ATT&CK® for Enterprise framework, version 13. See MITRE ATT&CK for Enterprise for all referenced tactics and techniques.
Appearing in February 2019, and evolving from the CryptoMix ransomware variant, CL0P was leveraged as a Ransomware as a Service (RaaS) in large-scale spear-phishing campaigns that used a verified and digitally signed binary to bypass system defenses. CL0P was previously known for its use of the “double extortion” tactic of stealing and encrypting victim data, refusing to restore victim access and publishing exfiltrated data on Tor via the CL0P^_-LEAKS website. In 2019, TA505 actors leveraged CL0P ransomware as the final payload of a phishing campaign involving a macro-enabled document that used a Get2 malware dropper for downloading SDBot and FlawedGrace. In recent campaigns beginning 2021, CL0P preferred to rely mostly on data exfiltration over encryption.
Beyond CL0P ransomware, TA505 is known for frequently changing malware and driving global trends in criminal malware distribution. Considered to be one of the largest phishing and malspam distributors worldwide, TA505 is estimated to have compromised more than 3,000 U.S.-based organizations and 8,000 global organizations.
TA505 has operated:
A RaaS and has acted as an affiliate of other RaaS operations,
As an initial access broker (IAB), selling access to compromised corporate networks,
As a customer of other IABs,
And as a large botnet operator specializing in financial fraud and phishing attacks.
In a campaign from 2020 to 2021, TA505 used several zero-day exploits to install a web shell named DEWMODE on internet-facing Accellion FTA servers. Similarly, the recent exploitation of MOVEit Transfer, a SQL injection vulnerability was used to install the web shell, which enabled TA505 to execute operating system commands on the infected server and steal data.
In late January 2023, the CL0P ransomware group launched a campaign using a zero-day vulnerability, now catalogued as CVE-2023-0669, to target the GoAnywhere MFT platform. The group claimed to have exfiltrated data from the GoAnywhere MFT platform that impacted approximately 130 victims over the course of 10 days. Lateral movement into the victim networks from the GoAnywhere MFT was not identified, suggesting the breach was limited to the GoAnywhere platform itself. Over the next several weeks, as the exfiltrated data was parsed by the group, ransom notes were sent to upper-level executives of the victim companies, likely identified through open source research. The ransom notes threatened to publish the stolen files on the CL0P data leak site if victims did not pay the ransom amount.
Figure 1: CL0P Ransom Note
Hello, this is the CL0P hacker group. As you may know, we recently carried out a hack, which was reported in the news on site [redacted].
We want to inform you that we have stolen important information from your GoAnywhere MFT resource and have attached a full list of files as evidence.
We deliberately did not disclose your organization and wanted to negotiate with you and your leadership first. If you ignore us, we will sell your information on the black market and publish it on our blog, which receives 30-50 thousand unique visitors per day. You can read about us on [redacted] by searching for CLOP hacker group.
You can contact us using the following contact information:
unlock@rsv-box[.]com
and
unlock@support-mult[.]com
CL0P’s toolkit contains several malware types to collect information, including the following:
FlawedAmmyy/FlawedGrace remote access trojan (RAT) collects information and attempts to communicate with the Command and Control (C2) server to enable the download of additional malware components [T1071], [T1105].
SDBot RAT propagates the infection, exploiting vulnerabilities and dropping copies of itself in removable drives and network shares [T1105]. It is also capable of propagating when shared though peer-to-peer (P2P) networks. SDBot is used as a backdoor [T1059.001] to enable other commands and functions to be executed in the compromised computer. This malware uses application shimming for persistence and to avoid detection [T1546.011].
Truebot is a first-stage downloader module that can collect system information and take screenshots [T1113], developed and attributed to the Silence hacking group. After connecting to the C2 infrastructure, Truebot can be instructed to load shell code [T1055] or DLLs [T1574.002], download additional modules [T1129], run them, or delete itself [T1070]. In the case of TA505, Truebot has been used to download FlawedGrace or Cobalt Strike beacons.
Cobalt Strike is used to expand network access after gaining access to the Active Directory (AD) server [T1018].
DEWMODE is a web shell written in PHP designed to target Accellion FTA devices and interact with the underlying MySQL database and is used to steal data from the compromised device [1505.003].
LEMURLOOT is a web shell written in C# designed to target the MOVEit Transfer platform. The web shell authenticates incoming http requests via a hard-coded password and can run commands that will download files from the MOVEit Transfer system, extract its Azure system settings, retrieve detailed record information, and create, insert, or delete a particular user. When responding to the request, the web shell returns data in a gzip compressed format.
CVE-2023-34362 MOVEIT TRANSFER VULNERABILITY
MOVEit is typically used to manage an organization’s file transfer operations and has a web application that supports MySQL, Microsoft SQL Server, and Azure SQL database engines. In May 2023, the CL0P ransomware group exploited a SQL injection zero-day vulnerability CVE-2023-34362 to install a web shell named LEMURLOOT on MOVEit Transfer web applications [T1190] [1]. The web shell was initially observed with the name human2.aspx in an effort to masquerade as the legitimate human.aspx file present as part of MOVEit Transfer software. Upon installation, the web shell creates a random 36 character password to be used for authentication. The web shell interacts with its operators by awaiting HTTP requests containing a header field named X-siLock-Comment, which must have a value assigned equal to the password established upon the installation of the web shell. After authenticating with the web shell, operators pass commands to the web shell that can:
Retrieve Microsoft Azure system settings and enumerate the underlying SQL database.
Store a string sent by the operator and then retrieve a file with a name matching the string from the MOVEit Transfer system.
Create a new administrator privileged account with a randomly generated username and LoginName and RealName values set to “Health Check Service.”
Delete an account with LoginName and RealName values set to ‘Health Check Service.’
Progress Software announced the discovery of CVE-2023-34362 MOVEit Transfer vulnerability and issued guidance on known affected versions, software upgrades, and patching. Based on evidence of active exploitation, CISA added this vulnerability to the Known Exploited Vulnerabilities (KEVs) Catalog on June 2, 2023. This MOVEit Transfer critical vulnerability exploit impacts the following versions of the software [2]:
MOVEit Transfer 2023.0.0
MOVEit Transfer 2022.1.x
MOVEit Transfer 2022.0.x
MOVEit Transfer 2021.1.x
MOVEit Transfer 2021.0.x
MOVEit Transfer 2020.1.x
MOVEit Transfer 2020.0.x
Due to the speed and ease TA505 has exploited this vulnerability, and based on their past campaigns, FBI and CISA expect to see widespread exploitation of unpatched software services in both private and public networks. For IOCs related to the MOVEit campaign, see table 2.
DETECTION METHODS
Below, are open source deployable YARA rules that may be used to detect malicious activity of the MOVEit Transfer Zero Day Vulnerability. For more information, visit GitHub or the resource section of this CSA. [1] [3]:
rule M_Webshell_LEMURLOOT_DLL_1 { meta: disclaimer = "This rule is meant for hunting and is not tested to run in a production environment" description = "Detects the compiled DLLs generated from human2.aspx LEMURLOOT payloads." sample = "c58c2c2ea608c83fad9326055a8271d47d8246dc9cb401e420c0971c67e19cbf" date = "2023/06/01" version = "1" strings: $net = "ASP.NET" $human = "Create_ASP_human2_aspx" $s1 = "X-siLock-Comment" wide $s2 = "X-siLock-Step3" wide $s3 = "X-siLock-Step2" wide $s4 = "Health Check Service" wide $s5 = "attachment; filename={0}" wide condition: uint16(0) == 0x5A4D and uint32(uint32(0x3C)) == 0x00004550 and filesize < 15KB and $net and ( ($human and 2 of ($s*)) or (3 of ($s*)) ) }
rule M_Webshell_LEMURLOOT_1 { meta: disclaimer = "This rule is meant for hunting and is not tested to run in a production environment" description = "Detects the LEMURLOOT ASP.NET scripts" md5 = "b69e23cd45c8ac71652737ef44e15a34" sample = "cf23ea0d63b4c4c348865cefd70c35727ea8c82ba86d56635e488d816e60ea45x" date = "2023/06/01" version = "1" strings: $head = "<%@ Page" $s1 = "X-siLock-Comment" $s2 = "X-siLock-Step" $s3 = "Health Check Service" $s4 = /pass, \"[a-z0-9]{8}-[a-z0-9]{4}/ $s5 = "attachment;filename={0}" condition: filesize > 5KB and filesize < 10KB and ( ($head in (0..50) and 2 of ($s*)) or (3 of ($s*)) ) }
If a victim rebuilds the web server but leaves the database intact, the CL0P user accounts will still exist and can be used for persistent access to the system.
Victims can use the following SQL query to audit for active administrative accounts, and should validate that only intended accounts are present.
SELECT * FROM [<database name>].[dbo].[users] WHERE Permission=30 AND Status="active" and Deleted='0'
CL0P ransomware group exploited the zero-day vulnerability CVE-2023-34362 affecting MOVEit Transfer software; begins with a SQL injection to infiltrate the MOVEit Transfer web application.
CL0P actors have been observed attempting to compromise the AD server using Server Message Block (SMB) vulnerabilities with follow-on Cobalt Strike activity.
The authoring agencies recommend organizations implement the mitigations below to improve their organization’s security posture in response to threat actors’ activity. These mitigations align with the Cross-Sector Cybersecurity Performance Goals (CPGs) developed by CISA and the National Institute of Standards and Technology (NIST). The CPGs provide a minimum set of practices and protections that CISA and NIST recommend all organizations implement. CISA and NIST based the CPGs on existing cybersecurity frameworks and guidance to protect against the most common and impactful threats and TTPs. Visit CISA’s Cross-Sector Cybersecurity Performance Goals for more information on the CPGs, including additional recommended baseline protections to reduce the risk of compromise by CL0P ransomware.
Reduce threat of malicious actors using remote access tools by:
Auditing remote access tools on your network to identify currently used and/or authorized software.
Reviewing logs for execution of remote access software to detect abnormal use of programs running as a portable executable [CPG 2.T].
Using security software to detect instances of remote access software only being loaded in memory.
Requiring authorized remote access solutions only be used from within your network over approved remote access solutions, such as virtual private networks (VPNs) or virtual desktop interfaces (VDIs).
Blocking both inbound and outbound connections on common remote access software ports and protocols at the network perimeter.
Implement application controls to manage and control execution of software, including allowlisting remote access programs.
Application controls should prevent installation and execution of portable versions of unauthorized remote access and other software. A properly configured application allowlisting solution will block any unlisted application execution. Allowlisting is important because antivirus solutions may fail to detect the execution of malicious portable executables when the files use any combination of compression, encryption, or obfuscation.
Strictly limit the use of RDP and other remote desktop services. If RDP is necessary, rigorously apply best practices, for example [CPG 2.W]:
Disable command-line and scripting activities and permissions [CPG 2.N].
Restrict the use of PowerShell, using Group Policy, and only grant to specific users on a case-by-case basis. Typically, only those users or administrators who manage the network or Windows operating systems (OSs) should be permitted to use PowerShell [CPG 2.E].
Update Windows PowerShell or PowerShell Core to the latest version and uninstall all earlier PowerShell versions. Logs from Windows PowerShell prior to version 5.0 are either non-existent or do not record enough detail to aid in enterprise monitoring and incident response activities [CPG 1.E, 2.S, 2.T].
Review domain controllers, servers, workstations, and active directories for new and/or unrecognized accounts [CPG 4.C].
Audit user accounts with administrative privileges and configure access controls according to the principle of least privilege [CPG 2.E].
Reduce the threat of credential compromise via the following:
Place domain admin accounts in the protected users’ group to prevent caching of password hashes locally.
Refrain from storing plaintext credentials in scripts.
Implement time-based access for accounts set at the admin level and higher [CPG 2.A, 2.E].
In addition, the authoring authorities of this CSA recommend network defenders apply the following mitigations to limit potential adversarial use of common system and network discovery techniques and to reduce the impact and risk of compromise by ransomware or data extortion actors:
Implement a recovery plan to maintain and retain multiple copies of sensitive or proprietary data and servers in a physically separate, segmented, and secure location (i.e., hard drive, storage device, the cloud).
Maintain offline backups of data and regularly maintain backup and restoration (daily or weekly at minimum). By instituting this practice, an organization limits the severity of disruption to its business practices [CPG 2.R].
Refrain from requiring password changes more frequently than once per year. Note: NIST guidance suggests favoring longer passwords instead of requiring regular and frequent password resets. Frequent password resets are more likely to result in users developing password “patterns” cyber criminals can easily decipher.
Require administrator credentials to install software.
Require multifactor authentication for all services to the extent possible, particularly for webmail, virtual private networks, and accounts that access critical systems [CPG 2.H].
Keep all operating systems, software, and firmware up to date. Timely patching is one of the most efficient and cost-effective steps an organization can take to minimize its exposure to cybersecurity threats. Prioritize patching known exploited vulnerabilities in internet-facing systems [CPG 1.E].
Segment networks to prevent the spread of ransomware. Network segmentation can help prevent the spread of ransomware by controlling traffic flows between—and access to—various subnetworks and by restricting adversary lateral movement [CPG 2.F].
Identify, detect, and investigate abnormal activity and potential traversal of the indicated ransomware with a networking monitoring tool. To aid in detecting the ransomware, implement a tool that logs and reports all network traffic, including lateral movement activity on a network. Endpoint detection and response (EDR) tools are particularly useful for detecting lateral connections as they have insight into common and uncommon network connections for each host [CPG 3.A].
Install, regularly update, and enable real time detection for antivirus software on all hosts.
Consider adding an email banner to emails received from outside your organization [CPG 2.M].
Disable hyperlinks in received emails.
Ensure all backup data is encrypted, immutable (i.e., ensure backup data cannot be altered or deleted), and covers the entire organization’s data infrastructure [CPG 2.K, 2.L, 2.R].
VALIDATE SECURITY CONTROLS
In addition to applying mitigations, FBI and CISA recommend exercising, testing, and validating your organization’s security program against the threat behaviors mapped to the MITRE ATT&CK for Enterprise framework in this advisory. The authoring authorities of this CSA recommend testing your existing security controls inventory to assess how they perform against the ATT&CK techniques described in this advisory. To get started:
Select an ATT&CK technique described in this advisory (see table 2).
Align your security technologies against the technique.
Test your technologies against the technique.
Analyze your detection and prevention technologies’ performance.
Repeat the process for all security technologies to obtain a set of comprehensive performance data.
Tune your security program, including people, processes, and technologies, based on the data generated by this process.
The FBI is seeking any information that can be shared, to include boundary logs showing communication to and from foreign IP addresses, a sample ransom note, communications with CL0P group actors, Bitcoin wallet information, decryptor files, and/or a benign sample of an encrypted file. The FBI and CISA do not encourage paying ransom as payment does not guarantee victim files will be recovered. Furthermore, payment may also embolden adversaries to target additional organizations, encourage other criminal actors to engage in the distribution of ransomware, and/or fund illicit activities. Regardless of whether you or your organization have decided to pay the ransom, the FBI and CISA urge you to promptly report ransomware incidents to a local FBI Field Office, report the incident to the FBI Internet Crime Complaint Center (IC3) at ic3.gov, or CISA at cisa.gov/report.
DISCLAIMER
The information in this report is being provided “as is” for informational purposes only. CISA and the FBI do not endorse any commercial product or service, including any subjects of analysis. Any reference to specific commercial products, processes, or services by service mark, trademark, manufacturer, or otherwise, does not constitute or imply endorsement, recommendation, or favoring by CISA or the FBI.