Empower Your Security Operations Team to Combat Emerging Threats

The implementation of defense-in-depth architectures and operating system hardening technologies have altered the threat landscape. Historically, zero-click, singular vulnerabilities were commonly discovered and exploited. The modern-day defensive posture requires attackers to successfully chain together multiple exploit techniques to gain control of a target system. The increased utilization of dynamic analysis systems has driven attackers to evade detection by requiring input or action from the user. Sometimes, the victim must perform several manual steps before the underlying payload is activated. Otherwise, it remains dormant and undetectable through behavioral analysis.

It is well known that client-side attacks are the predominant access vector for most initial access. Web browser and email-based malware campaigns target users through phishing, social engineering, and exploitation. Productivity and business tools from vendors like Adobe and Microsoft are widespread and provide attackers with many options. Combining the lack of security awareness training and well-developed social engineering tactics frequently results in users permitting the execution of malicious embedded logic like weaponized macros or other scripts. Analysis of these common malware carriers is time-consuming and tedious, and it requires expert skills. To adequately prevent, detect, and respond to these threats, an organization must throw everything at the problem and augment this previously human-intensive process.

Deep File Inspection (DFI) is one approach to ease the burden associated with continuous security monitoring. DFI is a static-analysis engine that inspects beyond Layer 7 of the OSI model, essentially automating the work of your typical SOC analyst or security researcher. Regardless of the complexity of evasive techniques a threat actor utilizes, DFI dissects malicious carriers to expose embedded logic, semantic context, and metadata. Coercive graphical lures
are extracted and processed through a machine vision layer, adding to the semantic context of the original file. Commonly used obfuscation methods and encoding mechanisms are automatically discovered and deciphered.

A public concern that…