Tag Archive for: actors

‘Financially Motivated Threat Actors’ Distributing Malware via App Installer


Microsoft is warning that bad actors, including those financially motivated, are using App Installer to distribute malware.

Microsoft Threat Intelligence says bad actors have been using the ms-appinstaller URI scheme (App Installer) to distribute malware since at least mid-November 2023. Microsoft has disabled the protocol handler in an effort to combat its abuse.

The observed threat actor activity abuses the current implementation of the ms-appinstaller protocol handler as an access vector for malware that may lead to ransomware distribution. Multiple cybercriminals are also selling a malware kit as a service that abuses the MSIX file format and ms-appinstaller protocol handler. These threat actors distribute signed malicious MSIX application packages using websites accessed through malicious advertisements for legitimate popular software. A second vector of phishing through Microsoft Teams is also in use by Storm-1674.

Threat actors have likely chosen the ms-appinstaller protocol handler vector because it can bypass mechanisms designed to help keep users safe from malware, such as Microsoft Defender SmartScreen and built-in browser warnings for downloads of executable file formats.

The attacks are especially dangerous for Teams users, since the bad actors are spoofing legitimate Microsoft pages.

Since the beginning of December 2023, Microsoft identified instances where Storm-1674 delivered fake landing pages through messages delivered using Teams. The landing pages spoof Microsoft services like OneDrive and SharePoint, as well as other companies. Tenants created by the threat actor are used to create meetings and send chat messages to potential victims using the meeting’s chat functionality.

More information can be found here, including detailed analysis of the attack. In the meantime, Microsoft says organizations should educate Teams users to be able to identify and protect themselves from this exploit.

Educate Microsoft Teams users to verify ‘External’ tagging on communication attempts from external entities, be cautious about what they share, and never share their account information or authorize sign-in requests over chat.

Source…

Threat Actors Exploit Adobe ColdFusion CVE-2023-26360 for Initial Access to Government Servers


SUMMARY

The Cybersecurity and Infrastructure Security Agency (CISA) is releasing a Cybersecurity Advisory (CSA) in response to confirmed exploitation of CVE-2023-26360 by unidentified threat actors at a Federal Civilian Executive Branch (FCEB) agency. This vulnerability presents as an improper access control issue impacting Adobe ColdFusion versions 2018 Update 15 (and earlier) and 2021 Update 5 (and earlier). CVE-2023-26360 also affects ColdFusion 2016 and ColdFusion 11 installations; however, they are no longer supported since they reached end of life. Exploitation of this CVE can result in arbitrary code execution. Following the FCEB agency’s investigation, analysis of network logs confirmed the compromise of at least two public-facing servers within the environment between June and July 2023.

This CSA provides network defenders with tactics, techniques, and procedures (TTPs), indicators of compromise (IOCs), and methods to detect and protect against similar exploitation.

Download the PDF version of this report:

For a downloadable copy of IOCs, see:

TECHNICAL DETAILS

Note: This advisory uses the MITRE ATT&CK® for Enterprise framework, version 14. See the MITRE ATT&CK Tactics and Techniques section for tables mapped to the threat actors’ activity.

Overview

Adobe ColdFusion is a commercial application server used for rapid web-application development. ColdFusion supports proprietary markup languages for building web applications and integrates external components like databases and other third-party libraries. ColdFusion uses a proprietary language, ColdFusion Markup Language (CFML), for development but the application itself is built using JAVA.

In June 2023, through the exploitation of CVE-2023-26360, threat actors were able to establish an initial foothold on two agency systems in two separate instances. In both incidents, Microsoft Defender for Endpoint (MDE) alerted of the potential exploitation of an Adobe ColdFusion vulnerability on public-facing web servers in the agency’s pre-production environment. Both servers were running outdated versions of software which are vulnerable to various CVEs. Additionally, various commands were initiated by the threat actors on the compromised web servers; the exploited vulnerability allowed the threat actors to drop malware using HTTP POST commands to the directory path associated with ColdFusion.

Analysis suggests that the malicious activity conducted by the threat actors was a reconnaissance effort to map the broader network. No evidence is available to confirm successful data exfiltration or lateral movement during either incident. Note: It is unknown if the same or different threat actors were behind each incident.

Incident 1

As early as June 26, 2023, threat actors obtained an initial foothold on a public-facing [T1190] web server running Adobe ColdFusion v2016.0.0.3 through exploitation of CVE-2023-26360. Threat actors successfully connected from malicious IP address 158.101.73[.]241. Disclaimer: CISA recommends organizations investigate or vet this IP address prior to taking action, such as blocking. This IP resolves to a public cloud service provider and possibly hosts a large volume of legitimate traffic.

The agency’s correlation of Internet Information Services (IIS) logs against open source[1] information indicates that the identified uniform resource identifier (URI) /cf_scripts/scripts/ajax/ckeditor/plugins/filemanager/iedit.cfc was used to exploit CVE-2023-26360. The agency removed the asset from the network within 24 hours of the MDE alert.

Threat actors started process enumeration to obtain currently running processes on the web server and performed a network connectivity check, likely to confirm their connection was successful. Following additional enumeration efforts to obtain information about the web server and its operating system [T1082], the threat actors checked for the presence of ColdFusion version 2018 [T1518]—previous checks were also conducted against version 2016.

Threat actors were observed traversing the filesystem [T1083] and uploading various artifacts to the web server [T1105], to include deleting the file tat.cfm [T1070.004]. Note: This file was deleted prior to the victim locating it on the host for analysis. Its characteristics and functionality are unknown. In addition:

  • Certutil[2] was run against conf.txt [T1140] and decoded as a web shell (config.jsp) [T1505.003],[T1036.008]. Conf.txt was subsequently deleted, likely to evade detection.
    Note: Threat actors were only observed interacting with the config.jsp web shell from this point on.
  • HTTP POST requests [T1071.001] were made to config.cfm, an expected configuration file in a standard installation of ColdFusion [T1036.005]. Code review of config.cfm indicated malicious code—intended to execute on versions of ColdFusion 9 or less—was inserted with the intent to extract username, password, and data source uniform resource locators (URLs). According to analysis, this code insertion could be used in future malicious activity by the threat actors (e.g., by using the valid credentials that were compromised). This file also contained code used to upload additional files by the threat actors; however, the agency was unable to identify the source of their origin.
  • Threat actors attempted to run attrib.exe to hide the newly created config.jsp web shell [T1564.001]. Analysis of this phase found no indication of successful execution.
  • A small subset of events generated from various ColdFusion application logs identified that tat.cfm, config.jsp, and system.cfm failed to execute on the host due to syntax errors.

Threat actors created various files (see Table 1 below) in the C:\IBM directory using the initialization process coldfusion.exe. None of these files were located on the server (possibly due to threat actor deletion) but are assessed as likely threat actor tools. Analysts assessed the C:\IBM directory as a staging folder to support threat actors’ malicious operations.

Disclaimer: Organizations are encouraged to investigate the use of these files for related signs of compromise prior to performing remediation actions. Two artifacts are legitimate Microsoft files; threat actors were observed using these files following initial compromise for intended malicious purposes.

Table 1: Threat Actor Tools

File Name

Hash (SHA-1)

Description

eee.exe

b6818d2d5cbd902ce23461f24fc47e24937250e6

VirusTotal[3] flags this file as malicious. This was located in D:\$RECYCLE.BIN.

edge.exe

75a8ceded496269e9877c2d55f6ce13551d93ff4

The dynamic-link library (DLL) file msedge.dll attempted to execute via edge.exe but received an error.

Note: This file is part of the official Microsoft Edge browser and is a cookie exporter.

fscan.exe

be332b6e2e2ed9e1e57d8aafa0c00aa77d4b8656

Analysis confirmed at least three subnets were scanned using fscan.exe, which was launched from the C:\IBM directory [T1046].

RC.exe

9126b8320d18a52b1315d5ada08e1c380d18806b

RCDLL.dll attempted to execute via RC.exe but received an error.

Note: This file is part of the official Windows operating system and is called Microsoft Resource Compiler.

Note: The malicious code found on the system during this incident contained code that, when executed, would attempt to decrypt passwords for ColdFusion data sources. The seed value included in the code is a known value for ColdFusion version 8 or older—where the seed value was hard-coded. A threat actor who has control over the database server can use the values to decrypt the data source passwords in ColdFusion version 8 or older. The victim’s servers were running a newer version at the time of compromise; thus, the malicious code failed to decrypt passwords using the default hard-coded seed value for the older versions.

Incident 2

As early as June 2, 2023, threat actors obtained an initial foothold on an additional public-facing web server running Adobe ColdFusion v2021.0.0.2 via malicious IP address 125.227.50[.]97 through exploitation of CVE-2023-26360. Threat actors further enumerated domain trusts to identify lateral movement opportunities [T1482] by using nltest commands. The threat actors also collected information about local [T1087.001] and domain [T1087.002] administrative user accounts while performing reconnaissance by using commands such as localgroup, net user, net user /domain, and ID. Host and network reconnaissance efforts were further conducted to discover network configuration, time logs, and query user information.

Threat actors were observed dropping the file d.txt—decoded as d.jsp—via POST command in addition to eight malicious artifacts (hiddenfield.jsp, hiddenfield_jsp.class, hiddenfield_jsp.java, Connection.jsp, Connection_jsp.class, Connection_jsp.java, d_jsp.class, and d_jsp.java/). According to open source information, d.jsp is a remote access trojan (RAT) that utilizes a JavaScript loader [T1059.007] to infect the device and requires communication with the actor-controlled server to perform actions.[4] The agency’s analysis identified the trojan as a modified version of a publicly available web shell code.[5] After maintaining persistence, threat actors periodically tested network connectivity by pinging Google’s domain name system (DNS) [T1016.001]. The threat actors conducted additional reconnaissance efforts via searching for the .jsp files that were uploaded.

Threat actors attempted to exfiltrate the (Registry) files sam.zip, sec.zip, blank.jsp, and cf-bootstrap.jar. Windows event logs identified the actors were not successful due to the malicious activity being detected and quarantined. An additional file (sys.zip) was created on the system; however, there were no indications of any attempt to exfiltrate it. Analysis identified these files resulted from executed save and compress data processes from the HKEY_LOCAL_MACHINE (HKLM) Registry key, as well as save security account manager (SAM) [T1003.002] information to .zip files. The SAM Registry file may allow for malicious actors to obtain usernames and reverse engineer passwords; however, no artifacts were available to confirm that the threat actors were successful in exfiltrating the SAM Registry hive.

Windows event logs show that a malicious file (1.dat) was detected and quarantined. Analysis determined this file was a local security authority subsystem service (LSASS) dump [T1003.001] file that contained user accounts—to include multiple disabled credentials—and Windows new technology LAN manager (NTLM) passwords. The accounts were found on multiple servers across the victim’s network and were not successfully used for lateral movement.

As efforts for reconnaissance continued, the threat actors changed their approach to using security tools that were present on the victim server. Esentutl.exe[6] was used to attempt this registry dump. Attempts to download data from the threat actors’ command and control (C2) server were also observed but blocked and logged by the victim server. Threat actors further attempted to access SYSVOL, which is used to deliver policy and logon scripts to domain members on an agency domain controller [T1484.001]. The attempt was unsuccessful. Had the attempt succeeded, the threat actors may have been able to change policies across compromised servers.[7]

Note: During this incident, analysis strongly suggests that the threat actors likely viewed the data contained in the ColdFusion seed.properties file via the web shell interface. The seed.properties file contains the seed value and encryption method used to encrypt passwords. The seed values can also be used to decrypt passwords. No malicious code was found on the victim system to indicate the threat actors attempted to decode any passwords using the values found in seed.properties file. Versions of ColdFusion 9 or greater use the seed.properties file, which contains unique seed values that can only be used on a single server.

MITRE ATT&CK TACTICS AND TECHNIQUES

See Tables 2-9 for all referenced threat actor tactics and techniques for enterprise environments in this advisory. For assistance with mapping malicious cyber activity to the MITRE ATT&CK framework, see CISA and MITRE ATT&CK’s Best Practices for MITRE ATT&CK Mapping and CISA’s Decider Tool.

Table 2: Initial Access

Technique Title

ID

Use

Exploit Public-Facing Application

T1190

Threat actors exploited two public-facing web servers running outdated versions of Adobe ColdFusion.

Table 3: Execution

Technique Title

ID

Use

Command and Scripting Interpreter: JavaScript

T1059.007

In correlation with open source information, analysis determined d.jsp is a RAT that utilizes a JavaScript loader to infect the device and requires communication with the actor-controlled server to perform actions.

Table 4: Persistence

Technique Title

ID

Use

Server Software Component: Web Shell

T1505.003

Threat actors uploaded various web shells to enable remote code execution and to execute commands on compromised web servers.

Table 5: Privilege Escalation

Technique Title

ID

Use

Domain Policy Modification: Group Policy Modification

T1484.001

Threat actors attempted to edit SYSVOL on an agency domain controller to change policies.

Table 6: Defense Evasion

Technique Title

ID

Use

Masquerading: Match Legitimate Name or Location

T1036.005

Threat actors inserted malicious code with the intent to extract username, password, and data source URLs into config.cfm—an expected configuration file in a standard installation of ColdFusion.

Masquerading: Masquerade File Type

T1036.008

Threat actors used the .txt file extension to disguise malware files.

Indicator Removal: File Deletion

T1070.004

Threat actors deleted files following upload to remove malicious indicators.

Deobfuscate/Decode Files or Information

T1140

Threat actors used certutil to decode web shells hidden inside .txt files.

Hide Artifacts: Hidden Files and Directories

T1564.001

Threat actors attempted to run attrib.exe to hide the newly created config.jsp web shell.

Table 7: Credential Access

Technique Title

ID

Use

OS Credential Dumping: LSASS Memory

T1003.001

Threat actors attempted to harvest user account credentials through LSASS memory dumping.

OS Credential Dumping: Security Account Manager

T1003.002

Threat actors saved and compressed SAM information to .zip files.

Table 8: Discovery

Technique Title

ID

Use

System Network Configuration Discovery: Internet Connection Discovery

T1016.001

Threat actors periodically tested network connectivity by pinging Google’s DNS.

Network Service Discovery

T1046

Threat actors scanned at least three subnets to gather network information using fscan.exe, to include administrative data for future exfiltration.

System Information Discovery

T1082

Threat actors collected information about the web server and its operating system.

File and Directory Discovery

T1083

Threat actors traversed and were able to search through folders on the victim’s web server filesystem. Additional reconnaissance efforts were conducted via searching for the .jsp files that were uploaded.

Account Discovery: Local Account

T1087.001

Threat actors collected information about local user accounts.

Account Discovery: Domain Account

T1087.002

Threat actors collected information about domain users, including identification of domain admin accounts.

Domain Trust Discovery

T1482

Threat actors enumerated domain trusts to identify lateral movement opportunities.

Software Discovery

T1518

Following initial access and enumeration, threat actors checked for the presence of ColdFusion version 2018 on the victim web server.

Table 9: Command and Control

Technique Title

ID

Use

Application Layer Protocol: Web Protocols

T1071.001

Threat actors used HTTP POST requests to config.cfm, an expected configuration file in a standard installation of ColdFusion.

Ingress Tool Transfer

T1105

Threat actors were able to upload malicious artifacts to the victim web server.

MITIGATIONS

CISA recommends organizations implement the mitigations below to improve your organization’s cybersecurity posture based on threat actor activity. These mitigations align with the Cross-Sector Cybersecurity Performance Goals (CPGs) developed by CISA and the National Institute of Standards and Technology (NIST). The CPGs provide a minimum set of practices and protections that CISA and NIST recommend all organizations implement. CISA and NIST based the CPGs on existing cybersecurity frameworks and guidance to protect against the most common and impactful threats, tactics, techniques, and procedures. Visit CISA’s Cross-Sector Cybersecurity Performance Goals for more information on the CPGs, including additional recommended baseline protections.

These mitigations apply to all critical infrastructure organizations and network defenders. CISA recommends that software manufacturers incorporate secure-by-design and -default principles and tactics into their software development practices, limiting the impact of threat actor techniques and strengthening the security posture for their customers. For more information on secure by design, see CISA’s Secure by Design webpage.

Manage Vulnerabilities and Configurations

  • Upgrade all versions affected by this vulnerability. Keep all software up to date and prioritize patching according to CISA’s Known Exploited Vulnerabilities Catalog [1.E].
  • Prioritize remediation of vulnerabilities on internet-facing systems, for example, by conducting continuous automated and/or routine vulnerability scans.
  • Prioritize secure-by-default configurations such as eliminating default passwords, implementing single sign-on (SSO) technology via modern open standards. This also includes disabling default credentials.

Segment Networks

  • Employ proper network segmentation, such as a demilitarized zone (DMZ) [2.F]. The end goal of a DMZ network is to allow an organization to access untrusted networks, such as the internet, while ensuring its private network or local area network (LAN) remains secure. Organizations typically store external-facing services and resources—as well as servers used for DNS, file transfer protocol (FTP), mail, proxy, voice over internet protocol (VoIP)—and web servers in the DMZ.
  • Use a firewall or web-application firewall (WAF) and enable logging [2.G, 2.T] to prevent/detect potential exploitation attempts. Review ingress and egress firewall rules and block all unapproved protocols. Limit risky (but approved) protocols through rules.
  • Implement network segmentation to separate network segments based on role and functionality [2.E]. Proper network segmentation significantly reduces the ability for threat actor lateral movement by controlling traffic flows between—and access to—various subnetworks. See CISA’s Layering Network Security Through Segmentation infographic and the National Security Agency’s (NSA’s) Segment Networks and Deploy Application-Aware Defenses.
  • Deploy application-aware network defenses to block improperly formed traffic and restrict content, according to policy and legal authorizations. Traditional intrusion detection systems (IDS) based on known-bad signatures are quickly decreasing in effectiveness due to encryption and obfuscation techniques. Threat actors hide malicious actions and remove data over common protocols, making the need for sophisticated, application-aware defensive mechanisms critical for modern network defenses.

Application Control

  • Enforce signed software execution policies. Use a modern operating system that enforces signed software execution policies for scripts, executables, device drivers, and system firmware. Maintain a list of trusted certificates to prevent and detect the use and injection of illegitimate executables. Execution policies, when used in conjunction with a secure boot capability, can assure system integrity.
  • Application control should be used with signed software execution policies to provide greater control. Allowing unsigned software enables threat actors to gain a foothold and establish persistence through embedded malicious code. See NSA’s Enforce Signed Software Execution Policies.

Manage Accounts, Permissions, and Workstations

  • Require phishing-resistant multifactor authentication (MFA) [2.H] for all services to the extent possible, particularly for webmail, VPN, and accounts that access critical systems.
  • Implement the principle of least privilege to decrease threat actors’ abilities to access key network resources.
  • Restrict file and directory permissions. Use file system access controls to protect folders such as C:\Windows\System32.
  • Restrict NTLM authentication policy settings, including incoming NTLM traffic from client computers, other member servers, or a domain controller.[8]

VALIDATE SECURITY CONTROLS

In addition to applying mitigations, CISA recommends exercising, testing, and validating your organization’s security program against the threat behaviors mapped to the MITRE ATT&CK for Enterprise framework in this advisory. CISA recommends testing your existing security controls inventory to assess how they perform against the ATT&CK techniques described in this advisory.

To get started:

  1. Select an ATT&CK technique described in this advisory (see Tables 2-9).
  2. Align your security technologies against the technique.
  3. Test your technologies against the technique.
  4. Analyze your detection and prevention technologies’ performance.
  5. Repeat the process for all security technologies to obtain a set of comprehensive performance data.
  6. Tune your security program, including people, processes, and technologies, based on the data generated by this process.

CISA recommends continually testing your security program, at scale, in a production environment to ensure optimal performance against the MITRE ATT&CK techniques identified in this advisory.

RESOURCES

REFERENCES

[1] Packet Storm Security: Adobe ColdFusion Unauthenticated Remote Code Execution
[2] MITRE: certutil
[3] VirusTotal: File – a3acb9f79647f813671c1a21097a51836b0b95397ebc9cd178bc806e1773c864
[4] Bleeping Computer: Stealthy New JavaScript Malware Infects Windows PCs with RATs
[5] GitHub: Tas9er/ByPassGodzilla
[6] MITRE: esentutl
[7] Microsoft: Active Directory – SYSVOL
[8] Microsoft: Restrict NTLM – Incoming NTLM Traffic

DISCLAIMER

The information in this report is being provided “as is” for informational purposes only. CISA does not endorse any commercial entity, product, company, or service, including any entities, products, or services linked within this document. Any reference to specific commercial entities, products, processes, or services by service mark, trademark, manufacturer, or otherwise, does not constitute or imply endorsement, recommendation, or favoring by CISA.

VERSION HISTORY

December 5, 2023: Initial version.

Source…

IRGC-Affiliated Cyber Actors Exploit PLCs in Multiple Sectors, Including U.S. Water and Wastewater Systems Facilities


SUMMARY

The Federal Bureau of Investigation (FBI), Cybersecurity and Infrastructure Security Agency (CISA), National Security Agency (NSA), Environmental Protection Agency (EPA), and the Israel National Cyber Directorate (INCD)—hereafter referred to as “the authoring agencies”—are disseminating this joint Cybersecurity Advisory (CSA) to highlight continued malicious cyber activity against operational technology devices by Iranian Government Islamic Revolutionary Guard Corps (IRGC)-affiliated Advanced Persistent Threat (APT) cyber actors.

The IRGC is an Iranian military organization that the United States designated as a foreign terrorist organization in 2019. IRGC-affiliated cyber actors using the persona “CyberAv3ngers” are actively targeting and compromising Israeli-made Unitronics Vision Series programmable logic controllers (PLCs). These PLCs are commonly used in the Water and Wastewater Systems (WWS) Sector and are additionally used in other industries including, but not limited to, energy, food and beverage manufacturing, and healthcare. The PLCs may be rebranded and appear as different manufacturers and companies. In addition to the recent CISA Alert, the authoring agencies are releasing this joint CSA to share indicators of compromise (IOCs) and tactics, techniques, and procedures (TTPs) associated with IRGC cyber operations.

Since at least November 22, 2023, these IRGC-affiliated cyber actors have continued to compromise default credentials in Unitronics devices. The IRGC-affiliated cyber actors left a defacement image stating, “You have been hacked, down with Israel. Every equipment ‘made in Israel’ is CyberAv3ngers legal target.” The victims span multiple U.S. states. The authoring agencies urge all organizations, especially critical infrastructure organizations, to apply the recommendations listed in the Mitigations section of this advisory to mitigate risk of compromise from these IRGC-affiliated cyber actors.

This advisory provides observed IOCs and TTPs the authoring agencies assess are likely associated with this IRGC-affiliated APT. For more information on Iranian state-sponsored malicious cyber activity, see CISA’s Iran Cyber Threat Overview and Advisories webpage and the FBI’s Iran Threat webpage.

For a PDF version of this CSA, see: 

For a downloadable copy of IOCs, see:

TECHNICAL DETAILS

Note: This advisory uses the MITRE ATT&CK® for Enterprise framework, version 14. See Table 1 for threat actor activity mapped to MITRE ATT&CK tactics and techniques. For assistance with mapping malicious cyber activity to the MITRE ATT&CK framework, see CISA and MITRE ATT&CK’s Best Practices for MITRE ATT&CK Mapping and CISA’s Decider Tool.

Overview

CyberAv3ngers (also known as CyberAveng3rs, Cyber Avengers) is an Iranian IRGC cyber persona that has claimed responsibility for numerous attacks against critical infrastructure organizations.[1],[2],[3],[4],[5] The group claimed responsibility for cyberattacks in Israel beginning in 2020. CyberAv3ngers falsely claimed they compromised several critical infrastructure organizations in Israel.[2] CyberAv3ngers also reportedly has connections to another IRGC-linked group known as Soldiers of Solomon.

Most recently, CyberAv3ngers began targeting U.S.-based WWS facilities that operate Unitronics PLCs.[1] The threat actors compromised Unitronics Vision Series PLCs with human machine interfaces (HMI). These compromised devices were publicly exposed to the internet with default passwords and by default are on TCP port 20256.

These PLC and related controllers are often exposed to outside internet connectivity due to the remote nature of their control and monitoring functionalities. The compromise is centered around defacing the controller’s user interface and may render the PLC inoperative. With this type of access, deeper device and network level accesses are available and could render additional, more profound cyber physical effects on processes and equipment. It is not known if additional cyber activities deeper into these PLCs or related control networks and components were intended or achieved. Organizations should consider and evaluate their systems for these possibilities.

Threat Actor Activity

The authoring agencies have observed the IRGC-affiliated activity since at least October 2023, when the actors claimed credit for the cyberattacks against Israeli PLCs on their Telegram channel. Since November 2023, the authoring agencies have observed the IRGC-affiliated actors target multiple U.S.-based WWS facilities that operate Unitronics Vision Series PLCs. Cyber threat actors likely compromised these PLCs since the PLCs were internet-facing and used Unitronics’ default password. Observed activity includes the following:

  • Between September 13 and October 30, 2023, the CyberAv3ngers Telegram channel displayed both legitimate and false claims of multiple cyberattacks against Israel. CyberAv3ngers targeted Israeli PLCs in the water, energy, shipping, and distribution sectors.
  • On October 18, 2023, the CyberAv3ngers-linked Soldiers of Solomon claimed responsibility for compromising over 50 servers, security cameras, and smart city management systems in Israel; however, majority of these claims were proven false. The group claimed to use a ransomware named “Crucio” against servers where the webcams camera software operated on port 7001.
  • Beginning on November 22, 2023, IRGC cyber actors accessed multiple U.S.-based WWS facilities that operate Unitronics Vision Series PLCs with an HMI likely by compromising internet-accessible devices with default passwords. The targeted PLCs displayed the defacement message, “You have been hacked, down with Israel. Every equipment ‘made in Israel’ is Cyberav3ngers legal target.”

INDICATORS OF COMPROMISE

See Table 1 for observed IOCs related to CyberAv3nger operations.

Table 1: CyberAv3nger IOCs

Indicator

Type

Fidelity

Description

BA284A4B508A7ABD8070A427386E93E0

MD5

Suspected

MD5 hash associated with Crucio Ransomware

66AE21571FAEE1E258549078144325DC9DD60303

 

SHA1

Suspected

SHA1 hash associated with Crucio Ransomware

440b5385d3838e3f6bc21220caa83b65cd5f3618daea676f271c3671650ce9a3

 

SHA256

 

Suspected

SHA256 hash associated with Crucio Ransomware

 

178.162.227[.]180

IP address

 

 

185.162.235[.]206

IP address

 

 

MITRE ATT&CK TACTICS AND TECHNIQUES

See Table 2 for referenced threat actor tactics and techniques in this advisory.

Table 2: Initial Access

Technique Title

ID

Use

Brute Force Techniques

T1110

Threat actors obtained login credentials, which they used to successfully log into Unitronics devices and provide root-level access.

MITIGATIONS

The authoring agencies recommend critical infrastructure organizations, including WWS sector facilities, implement the following mitigations to improve your organization’s cybersecurity posture to defend against CyberAv3ngers activity. These mitigations align with the Cross-Sector Cybersecurity Performance Goals (CPGs) developed by CISA and the National Institute of Standards and Technology (NIST). The CPGs provide a minimum set of practices and protections that CISA and NIST recommend all organizations implement. CISA and NIST based the CPGs on existing cybersecurity frameworks and guidance to protect against the most common and impactful threats, tactics, techniques, and procedures. Visit CISA’s Cross-Sector Cybersecurity Performance Goals for more information on the CPGs, including additional recommended baseline protections.

Note: The below mitigations are based on threat actor activity against Unitronics PLCs but apply to all internet-facing PLCs.

Network Defenders

The cyber threat actors likely accessed the affected devices—Unitronics Vision Series PLCs with HMI—by exploiting cybersecurity weaknesses, including poor password security and exposure to the internet. To safeguard against this threat, the authoring agencies urge organizations to consider the following:

Immediate steps to prevent attack:

  • Change all default passwords on PLCs and HMIs and use a strong password. Ensure the Unitronics PLC default password is not in use.
  • Disconnect the PLC from the public-facing internet.

Follow-on steps to strengthen your security posture:

  • Implement multifactor authentication for access to the operational technology (OT) network whenever applicable.
  • If you require remote access, implement a firewall and/or virtual private network (VPN) in front of the PLC to control network access. A VPN or gateway device can enable multifactor authentication for remote access even if the PLC does not support multifactor authentication.
  • Create strong backups of the logic and configurations of PLCs to enable fast recovery. Familiarize yourself with factory resets and backup deployment as preparation in the event of ransomware activity.
  • Keep your Unitronics and other PLC devices updated with the latest versions by the manufacturer.
  • Confirm third-party vendors are applying the above recommended countermeasures to mitigate exposure of these devices and all installed equipment.

In addition, the authoring agencies recommend network defenders apply the following mitigations to limit potential adversarial use of common system and network discovery techniques, and to reduce the impact and risk of compromise by cyber threat actors:

  • Reduce risk exposure. CISA offers a range of services at no cost, including scanning and testing to help organizations reduce exposure to threats via mitigating attack vectors. CISA Cyber Hygiene services can help provide additional review of organizations’ internet-accessible assets. Email [email protected] with the subject line, “Requesting Cyber Hygiene Services” to get started.

Device Manufacturers

Although critical infrastructure organizations using Unitronics (including rebranded Unitronics) PLC devices can take steps to mitigate the risks, it is ultimately the responsibility of the device manufacturer to build products that are secure by design and default. The authoring agencies urge device manufacturers to take ownership of the security outcomes of their customers by following the principles in the joint guide Shifting the Balance of Cybersecurity Risk: Principles and Approaches for Secure by Design Software, primarily:

  • Do not charge extra for basic security features needed to operate the product securely.
  • Support multifactor authentication, including via phishing-resistant methods.

By using secure by design tactics, software manufacturers can make their product lines secure “out of the box” without requiring customers to spend additional resources making configuration changes, purchasing tiered security software and logs, monitoring, and making routine updates.

For more information on common misconfigurations and guidance on reducing their prevalence, see joint advisory NSA and CISA Red and Blue Teams Share Top Ten Cybersecurity Misconfigurations. For more information on secure by design, see CISA’s Secure by Design and Default webpage and joint guide.

VALIDATE SECURITY CONTROLS

In addition to applying mitigations, the authoring agencies recommend exercising, testing, and validating your organization’s security program against the threat behaviors mapped to the MITRE ATT&CK for Enterprise framework in this advisory. The authoring agencies recommend testing your existing security controls inventory to assess how they perform against the ATT&CK techniques described in this advisory.

To get started:

  1. Select an ATT&CK technique described in this advisory (see Table 2).
  2. Align your security technologies against the technique.
  3. Test your technologies against the technique.
  4. Analyze your detection and prevention technologies’ performance.
  5. Repeat the process for all security technologies to obtain a set of comprehensive performance data.
  6. Tune your security program, including people, processes, and technologies, based on the data generated by this process.

The authoring agencies recommend continually testing your security program, at scale, in a production environment to ensure optimal performance against the MITRE ATT&CK techniques identified in this advisory.

RESOURCES

REPORTING

All organizations should report suspicious or criminal activity related to information in this CSA to CISA via CISA’s 24/7 Operations Center ([email protected] or 888-282-0870). The FBI encourages recipients of this document to report information concerning suspicious or criminal activity to their local FBI field office or IC3.gov. For NSA client requirements or general cybersecurity inquiries, contact [email protected].

Additionally, the WaterISAC encourages members to share information by emailing [email protected], calling 866-H2O-ISAC, or using the online incident reporting form. State, local, tribal, and territorial governments should report incidents to the MS-ISAC ([email protected] or 866-787-4722).

REFERENCES

  1. CBS News: Municipal Water Authority of Aliquippa hacked by Iranian-backed cyber group
  2. Industrial Cyber: Digital Battlegrounds – Evolving Hybrid Kinetic Warfare
  3. Bleeping Computer: Israel’s Largest Oil Refinery Website Offline After DDoS Attack
  4. Dark Reading: Website of Israeli Oil Refinery Taken Offline by Pro-Iranian Attackers
  5. X: @CyberAveng3rs

DISCLAIMER

The information in this report is being provided “as is” for informational purposes only. The authoring agencies do not endorse any commercial entity, product, company, or service, including any entities, products, or services linked within this document. Any reference to specific commercial entities, products, processes, or services by service mark, trademark, manufacturer, or otherwise, does not constitute or imply endorsement, recommendation, or favoring by the authoring agencies.

VERSION HISTORY

December 1, 2023: Initial version.

Source…

Threat actors abuse Google Ads to distribute info-stealing malware: Report


A threat actor was found abusing Google Ads to distribute a trojanised version of the CPU-Z tool to deliver the Redline info-stealing malware.

Threat actors were found using Google Ads to redirect users to a cloned copy of the legitimate Windows news site Windows Report.

Clicking on the ad takes the victim through a redirect step that tricks Google’s anti-abuse crawlers by sending invalid visitors to an innocuous site, a report from Bleeping Computer said.

Those deemed valid to receive the payload are redirected to a Windows news site that lookalike hosted on a number of different domains.  Users are then presented with a “Download now” button that results in them installing a malicious script that loads the malware on devices.

(For top technology news of the day, subscribe to our tech newsletter Today’s Cache)

This malware is a powerful stealer able to collect passwords, cookies, and browsing data from a range of web browsers and applications, as well as sensitive data from cryptocurrency wallets.

Users are advised to be careful when clicking on promoted results in Google Search and check the loaded site and the domain match before downloading any files. Users can also make use of adblockers to automatically hide such results from their search results.

This is a Premium article available exclusively to our subscribers. To read 250+ such premium articles every
month

You have exhausted your free article limit.
Please support quality journalism.

You have exhausted your free article limit.
Please support quality journalism.

This is your last free article.

Source…